
Cross-region Traffic Prediction for China on
OpenStreetMap

Frank F. Xu1 Bill Y. Lin1 Qi Lu1 Yifei Huang1 Kenny Q. Zhu2

Shanghai Jiao Tong University
Shanghai, China

1 {frankxu,yuchenlin,icedream,5130309269}@sjtu.edu.cn 2 kzhu@cs.sjtu.edu.cn

ABSTRACT
OpenStreetMap (OSM) is a free, open-source and popular
mapping service. However, due to various reasons, it doesn’t
offer live traffic information or traffic prediction for China.
This paper presents an approach and a system to learn a
prediction model from graphical traffic condition data pro-
vided by Baidu Map, which is a commercial, close-source
map provider in China, and apply the model on OSM so
that one can predict the traffic conditions with nearly 90%
accuracy in various parts of Shanghai, China, even though
no traffic data is available for that area from Baidu Map.
This novel system can be useful in urban planning, trans-
portation dispatching as well as personal travel planning. 1

CCS Concepts
•Information systems→Geographic information sys-
tems; Data mining;

1. INTRODUCTION
The goal of this work is to develop a framework and a

system to predict traffic conditions on any roads given a map
formatted in OpenStreetMap data [5]. Traffic prediction
can help urban planners optimize roads and arrange land
usage. Also, it can assist people to organize their itinerary
and routes more reasonable. In addition, it can help with
transport distribution. The inputs to the problem include:
the topological map data, time of the day, day of the week,
location and weather, etc. The output will be classified into
four classes: green (good), yellow (slow), red (congested)
and deep red (extremely congested).

There are four major challenges in this research. The first
one is the data incompleteness. Baidu Map does not directly
share their data of POIs and real-time traffic information.
Although OpenStreetMap is free, it lacks lots of POIs in
China and has no real-time traffic information. Apart from
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that, integrating these two resources is also difficult because
the two maps are using different coordinate systems. The
third challenge is feature selection. There are plenty of fea-
tures that will influence the traffic conditions. We need to
select all the possible features without introducing noises.
The last one is the data imbalance. This dataset is predom-
inately composed of green (good) than other classes.

Our approach can be divided into three stages.

• First, integrating the map data and live traffic data
from Baidu Map into OSM.

• Second, feature engineering. In this stage, we come up
with many useful features.

• Third, prediction model training. We use multi-class
linear SVM with weight [16] to train our model.

The main contributions of this paper are as follows:

• First, our system can do cross prediction, we employ
the transfer learning concept in traffic prediction field
so that we can predict traffic in areas where we do not
have any historical traffic data, which is one of the first
systems that are enable to do this.

• Second, our system combines diverse useful features
that can be categorized into two types: geospatial fea-
tures and implicit features.

• Third, our approach to address the data imbalance
issue is effective in this particular multi-classification
problem.

2. OUR APPROACH
In this section, we will give preliminaries about OSM and

Baidu Map and then present the three stages of our approach
in detail. Plus, we showcase a demo at the end.

2.1 OpenStreetMap
The open-source OpenStreetMap data dump is available

at http://planet.osm.org/. Elements are the basic compo-
nents of OpenStreetMap’s data. They consist of nodes, ways
and relations. All of the above can have several tags, which
describe the meaning of a particular element.

A node represents a specific point on the earth’s surface
defined by its latitude and longitude such as a park. We
mainly use nodes to represent local features such as POIs
(Points Of Interests).

A way is an ordered list of between 2 and 2,000 nodes
that define a polyline. Ways are used to represent roads and



boundaries of areas such as forests. We mainly focus on the
ways with specific tag “highway”, which identifies any kind
of road, street or path. For example, “highway=residential”
defines a road connecting homes within a residential area.

A relation documents a relationship between two or more
data elements (nodes, ways, and/or other relations), which
may list the ways that form a highway, a cycle route, or a
bus route.

2.2 Baidu Map
While OSM serves as the basis of the map structures, it

has not become one of the most popular mapping software in
China, and hence its user-generated features such as points
of interests are extremely deficient. More importantly, OSM
does not provide live traffic conditions in China, which is the
key for training a prediction model.

Baidu Map, the biggest map provider in China, however,
has all the bells and whistles. It provides lots of web APIs.
We use the following APIs in this work. One is coordinate
conversion API used for converting other global coordinate
systems (e.g., WGS-84 and GCJ-02) to Baidu lon-lat coor-
dinates BD-09. Another API converts BD-09 coordinates to
Baidu’s internal (x, y) point coordinates. These internal co-
ordinates can be used to locate image pixels on Baidu map.
The third API is bounded POIs search, which can return all
POIs of a certain category within a certain area bound.

Figure 1: Part of Shanghai on Baidu Map with live traffic

Baidu also provides near real-time traffic condition infor-
mation. For example in Fig. 1, green, yellow, red and deep
red lines represent good, slow, congested and extremely con-
gested traffic respectively. Programmatically, the traffic in-
formation can be obtained by two image APIs:

• Map image API. 2 See Fig. 2a for returned image.

• Traffic image API. 3 See Fig. 2b for returned image.

Each of the APIs returns a 256 × 256 pixels image tile
given a pair of (x, y) coordinates and a zoom level. With
the same x and y and zoom level, the two APIs return tiles
of the same physical size and in the same location, such as
shown in Fig. 2.

2.3 Integration of Baidu Map into OSM
Having collected the POIs and traffic condition image tiles

from Baidu, our major challenges are i) that Baidu and

2http://online1.map.bdimg.com/onlinelabel/?qt=
tile&x=13204&y=3550&z=16
3http://its.map.baidu.com:8002/traffic/
TrafficTileService?level=16&x=13204&y=3550&time=
1464020567811

(a) map tile (b) traffic tile

Figure 2: Image tiles (256× 256 pix) at same location

OSM use different coordinate systems; ii) the traffic con-
dition needs to be read from the image tiles and assigned
to individual road segments on OSM. We next explain our
solution to these challenges.

2.3.1 Transformation of coordinates
There are three types of coordinate Systems involved in

this work:

• WGS-84, real coordinates from satellites, adopted by
OSM and Google map;

• GCJ-02, encrypted from WGS-84 in for use in China;

• BD-09, encrypted from GCJ-02 for use in Baidu.

The mapping from WGS-84 to GCJ-02 and then to BD-
09 can be done by transformation functions provided by [9].
However, the inverse mapping, which is what we need to
merge Baidu’s POIs into OSM, is not available. The trans-
formation between GCJ-02 and BD-09 are analytically solv-
able, so the challenge lies in the GCJ-02 and WGS-84 trans-
formation. We use an iterative numerical analysis to esti-
mate the inverse function with an error within 0.5 meters.

To match the road segments in OSM to Baidu and hence
obtain the traffic condition, we need to first convert OSM
coordinates to BD-09 by f and then from BD-09 to Baidu’s
(x, y) point coordinates by the Baidu API. With the (x, y)
point coordinates in Baidu, we can compute the exact pixel
in the traffic tile image downloaded from Baidu.

2.3.2 Parsing Traffic Information
Despite all above efforts, the translation from WGS-84

into Baidu’s pixel coordinates is not perfect. Furthermore,
the nodes along an OSM road are often mapped to the center
of the a two-way road (shown as the black dots in Fig. 3),
where the traffic information (the colored lines) are painted
on the sides of the road (see Fig. 3). Therefore, in this
section, we introduce our approach to fuzzy match the nodes
translated from OSM to traffic condition.

Figure 3: Fuzzy matching example

We assume the road segment between two consecutive
nodes n1 and n2 (shown as black dots in the figure) is a



straight line and compute n sample points on this line. The
size of n is proportional to the distance between n1 and n2.
If this is a one-way road, we scan the pixels along the line
perpendicular to the road segment to look for nearest col-
ored pixels on the image within threshold distance. The four
colors have standard RGB values for Baidu map. If any of
these colors is located, we have found a traffic sample, and
this is marked as a yellow dot in Fig. 3. By majority votes,
the traffic samples for each road segment together decide the
traffic condition of that segment.

For two-way roads, traffic conditions can be found on two
directions and this needs to be handled by looking for two
parallel colored lines nearby the sample points, indicated as
red and blue dots in Fig. 4. Almost all traffic conditions are
correctly identified in this very complex scenario.

Figure 4: Massive junction of elevated roads

2.4 Feature Engineering
Our system makes use of two types of features: geospatial

features and implicit features. Each feature is calculated
and assigned to every individual road segment on the road
map. Next we explain these features in more details.

2.4.1 Geospatial Features
The main intuition behind these geospatial features is that

the traffic condition depends on the the density of the local
road network and also the type and number of POIs near by.
If there are too many traffic lights in a short stretch of road,
chances are the traffic will be slow. On the other hand, if
there is a school by the road, traffic will be affected in the
morning and afternoon due to the delivery and picking up
of school children by their parents.

To measure the density of the road network, we calculate
the average distance between two adjacent traffic lights 4

in both directions of the road segment. We divide all POIs
on Baidu map into 37 types. This classification is obtained
by merging some of the finer categories which were defined
by Baidu’s 2-level POI type hierarchy. Our second type of
local features are the distribution of these 37 types of POI
in the vicinity of the target road segment, computed in both
directions of travel (see Fig. 5).

2.4.2 Implicit Features
The following features are not properties of the map, but

have implicit impact on the population density of an area,
drivers’ behaviors and the travel patterns. We proposed 8
features in this category:
4This is calculated by averaging from three pairs of consec-
utive crossroads starting from the road segment in question.

Figure 5: Local Geospatial Features

• the time of the day (in hours);
• weekday or weekend;
• the 1-, 2- and 3-bedroom apartment rental price in the

area;
• the temperature in the day and night; and
• the weather condition of the time (i.e., sunny, cloudy,

shower or rainy, etc.).

2.5 Model Training
We adopt a supervised training approach here where the

training data are feature vectors extracted for road segments
and the labels are the traffic conditions (green, yellow, etc.).
One obvious challenge for our problem is that the classes are
extremely imbalanced. That is, there’s probably an order of
magnitude more instances of green labels than the yellow
labels, and similarly between yellow and red labels, because
over a long period of time, normal traffic should dominate
the the road network.

We train our classifier on LIBLINEAR [7]. Our multi-
class SVM is actually an ensemble of 4 one-versus-rest binary
SVMs. We convert categorical attributes such as weather
into numerical values. We use a 1-hot m-dimensional binary
vector to represent an m-category attribute. Further, we
linearly scale each attribute in both training and test data
to the range [0, 1].

To counter the data imbalance issue, we add a penalty
for mis-classification to each class [12], which minimizes the
following:

min

1

2
w · w + C+

l∑
i|yi=+1

ξi + C−
l∑

i|yi=−1


s.t. yi(w · Φ(xi) + b) ≥ 1− ξi (1)

ξi ≥ 0, i = 1 . . . l

where C+ and C− are the weights for the positive and the
negative classes, respectively. In this method, the SVM soft
margin objective function is modified to assign two misclas-
sification costs, such that C+ is the misclassification cost for
postive class example, while C− is the misclassification cost
for negative class examples, as given in the following for-
mula. here we also assume positive class to be the minority
class and negtive class to be the majority class.

The misclassification penalty for the minority class is cho-
sen to be larger than that of the majority class. Essentially
this is equivalent to oversampling the minority class.

3. EVALUATION



This section first introduces the datasets for the evaluation
and then present four experiments. The first one compares
the performance of two models specifically targeting data
imbalance on Huangpu district. The second examines the
effectiveness of our features. The third experiment evaluates
the same area traffic predication by comparing our model
with Baidu Map prediction. The last experiment evaluates
the cross-region prediction.

3.1 Datasets
Our training and test data are the map features and live

traffic data of four districts of Shanghai, China: Huangpu
(HP), Changning (CN), Baoshan (BS) and Minhang (MH).
The first two districts are smaller but populous downtown
districts with more business and commercial destinations;
the rest are suburban districts with larger area and contain
more industrial and residential locations.

In this work, we consolidate Baidu’s POI classification
into 37 types, and use bounded POI search API to query all
the POIs of all types. Table 1 shows the number of POIs of
some types in four areas. As Minhang and Baoshan district
are larger than Huangpu and Changning district, the total
numbers of POIs are higher in those areas. As a urban center
district, Huangpu has lots of shopping places considering the
area. Also, there are significantly more factories in these
district. It is shown that our selection of the datasets is
sufficiently diverse.

Table 1: An overview statistics of POI data
HP CN MH BS

Residential 13173 14451 17884 20559
Business 12965 11465 21753 13716
Shopping 7959 4734 11574 7103
Factory 44 44 565 671
Other 16718 15006 30699 20399
Total 50859 45700 82475 62448

The traffic information and other non-geospatial features
such as weather and rental prices were crawled from May 19
to May 25 and from May 28 to June 1, 2016. The first 7
days of data is used for training while the remaining 5 days
are used for testing.

Our dataset is intrinsically imbalanced. Table 2 shows
the class distribution in the ground truth data of all four
districts.

Table 2: Imbalanced distribution of classes
Green Yellow Red Deep Red

Support 3,481,345 174,106 41,912 3808

Due to the imbalance nature of this data, we consider F1-
score for each class label as well, rather than only overall
accuracy for predicting.

3.2 Model Evaluation
We compare SVM+w with vanilla SVM model for pre-

dicting traffic of Shanghai Huangpu district.
Table 3 shows the F1 for predicting green, yellow, red and

deep red classes.
SVM+w can be trained much more efficiently, the predic-

tion F1-score, except for the green class, is always higher.
Therefore, we eventually choose the SVM+w as our primary

model for its outstanding performance and its fast training
process.

Table 3: F1-scores for predicting Huangpu district
Model/Class Green Yellow Red Deep Red

SVM 0.9582 0.0065 0.0000 0.0000
SVM+w 0.9367 0.1587 0.1191 0.0049

3.3 Feature Assessment
To illustrate the effectiveness of our features, we train four

models with each of our features(road density, local POI
distribution and rental price). And then we individually
turn off one of them, and see the change in F1-score of the
4 classes. The results are shown in Fig. 6, in which we can
obviously conclude that each of our features are effective,
especially POIs.

The reason why POIs is a very important feature to de-
scribe the traffic situation is that it represents the popularity
of certain road segments. Apart from that, we can find that
other local features are also very helpful in training models,
for the fact that local features like roadType and roadDen-

sity are good indicators of traffic status.

3.4 Same-area Prediction
Baidu Map also has a traffic prediction system but it can

predict traffic for a certain area only after gathering enough
amount of historical data for the area. We sampled the
Baidu’s prediction at a historical time point (at one-hour
interval) and use this as a kind of baseline.

Using the Huangpu district as an example, we first show
the effect of date and time on the average prediction accu-
racy over 5 days for all methods.

Fig. 7 shows the accuracy results which compares our
weighted SVM model with the Baidu Map’s system. We can
see that prediction accuracy at rush hours (9:00 and 17:00)
is generally lower than other times of the day in both two
results. This is because rush hour traffic is more volatile and
exceptional events such as accidents may happen at different
locations, which makes it hard to predict.

As a result, we reached an accuracy of 87.425% while
Baidu Map has an accuracy of 82.798%.

In Table 4, we could see another evaluation result of our
model compared Baidu’s system. Although the F1-score of
our system is a little bit lower than Baidu’s, but our recall
value is quite higher than Baidu’s. Considering the appli-
cation of the traffic prediction system, the recall value is a
more important indicator: It can cause severe problems on
user experience when the system tells users a certain road
is clear, but actually the traffic is very slow.

3.5 Cross-area Prediction
In this experiment, we train our model from training data

of four different districts and use them to test the other
districts. Table 5 documents the F1-score on four different
traffic classes. As a comparison, we also show the results of

Table 4: Comparison of scores on red and deep red class of
Baidu Map prediction with our system

Baidu Map Our System
P R F1 P R F1

Red 0.255 0.110 0.154 0.096 0.157 0.119
Deep Red 0.000 0.000 0.000 0.003 0.233 0.005
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Figure 6: F1-score with some features turned off for traffic conditions green, yellow, red and deep red
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Figure 7: Prediction accuracy in a day for Huangpu District

same-district prediction as well. From the table, we could see
that in most cases our model yield good prediction results
on cross-region prediction.

In summary, we considered our cross-region prediction to
be effective at predicting other geographically or character-
istically similar areas without historical traffic data.

Table 5: F1-score of cross-area prediction for 4 classes.
T:Test data, M:Training data

Green

T
M

HP CN MH BS

HP 0.9367 0.8166 0.7029 0.6854
CN 0.9443 0.9454 0.8803 0.8017
MH 0.9763 0.9613 0.9691 0.9559
BS 0.9689 0.9529 0.9515 0.9662

Yellow

T
M

HP CN MH BS

HP 0.1587 0.1705 0.1124 0.1248
CN 0.0509 0.1841 0.0970 0.0825
MH 0.0007 0.0549 0.0798 0.0721
BS 0.0040 0.0530 0.0458 0.0876

Red

T
M

HP CN MH BS

HP 0.1191 0.0440 0.0301 0.0277
CN 0.0426 0.1096 0.0831 0.0429
MH 0.0100 0.0387 0.0841 0.0406
BS 0.0217 0.0414 0.0581 0.1124

Deep Red

T
M

HP CN MH BS

HP 0.0049 0.0002 0.0011 0.0002
CN 0.0027 0.0287 0.0013 0.0015
MH 0.0000 0.0043 0.0241 0.0022
BS 0.0000 0.0005 0.0290 0.1002

4. RELATED WORK
In this section, we’ll review the related work on traffic

prediction, data imbalance problem, transfer learning.

4.1 Traffic Prediction
Much work has been done on predicting traffic conditions.

Most commercial mapping services such as Google Map and
Baidu Map offer the functionality to predict traffic status of
major roads in future, often based on the historical traffic
data in the past. Prediction of brand new area with no
historical data is rare.

Research work has been done to tackle this problem from
different aspects. The previous traffic prediction methods
can be divided into two categories mainly: Simulation Mod-
els and Machine Learning Techniques.

Simulation Models
Based on observed traffic data, Clark et al.[4] proposes a
non-parametric regression model to predict traffic. Bierlaire
[1], described a real time dynamic traffic assignment sys-
tem that provides traffic prediction and other services like
travel guidance. Their microscopic simulation models are
both based on trajectories of individual vehicles to simulate
overall traffic data and further prediction. In some other
papers [17], researchers use traffic data from GPS-equipped
taxicabs to estimate the traffic flow of certain road segments.

The main limitation of such studies is that they all rely on
very sporadic observations so that they are often restricted
to synthetic and simplified data for simulation. Also, these
simulation models cannot be applied to other road segments
where there isn’t any historical traffic data.

Machine Learning Techniques
A very common idea is to consider changes to traffic condi-
tion on any stretch of road as a simple time series. Much
valuable work was done along this line. Since early 1980s,
univariate time series models, such as Auto-Regressive Inte-
grated Moving Average(ARIMA)[2] and Exponential Smooth-
ing(ES) models [11], have been widely used in traffic predic-
tion. In the last decade, more researchers turned to Neural
Network(NN) models in forecasting of various traffic param-
eters such as speed[8], estimated travel time[10] and traffic
flow.

More recently, researchers have attempted to solve similar
problems by proposing complex networks [6, 15], machine
learning [14, 18] and even deep learning methods [3].

However, there are two main shortcomings in most of
these models: The first one is that most of them are still
based on the naive idea. Many of them still treat traffic flow
as univariate time-series data and ignore all the other im-
portant information. In our model, we included many local
features like weather, house pricing, POI and so on.

4.2 Data Imbalance Problem
Real-world datasets are predominately composed of nor-

mal examples with only a small percentage of abnormal or



important examples, which will cause misclassified prob-
lems. As our problem is based on real-world traffic infor-
mation, the class imbalance is a serious issue. For our case,
there would be more data representing the class of clear
traffic than other classes, often to large ratio.

Previous researchers have done a lot in this field. One ap-
proach is to assign distinct costs to training examples. The
other is to re-sample the original dataset by under-sampling
and up-sampling. Under-sampling of the majority class is
a good way to increase the sensitivity of a classifier to the
minority class. But it doesn’t improve minority class recog-
nition. And the general idea of the cost function based ap-
proaches is that we think one false negative is worse than
one positive, in other words, we give more weights to the
false negative than false positive, so the machine learning
algorithm will try to make fewer false negatives compared
to false positives. In case of SVM, different classes can have
different weights on them, resulting desired loss penalty.

4.3 Transfer Learning
Many machine learning are based on the assumption that

training and future data are in the same future space and
have the same distribution. However, in real-world appli-
cations, there are many cases that we have a classification
task in one domain while the training data in another do-
main. One of the best ways to solve this problem is transfer
learning.

Transfer learning has been studied by researches for a long
time to solve this problem. Semi-supervised classification
[19] addresses the problem that the labeled data may be
too few to build a good classifier, by making use of large
amount of unlabeled data together with a small amount of
labeled data. Variations of supervised and semi-supervised
learning for imperfect data sets have also been studied on
how to deal with the noise problems. Pan et al [13] cat-
egorize transfer learning into three sub-settings, inductive
transfer learning, transductive transfer learning and unsu-
pervised transfer learning.

In our task, we get the training data from Baidu Map. Be-
cause there are some rural places where Baidu Map cannot
provide their traffic conditions, we lack the training data of
these regions. So we need to do transfer learning. We use
data that those areas have similar features as these to be
the training data to do transfer learning.

5. CONCLUSION
This paper shares our experience of developing a system

capable of learning from both geospatial and non-geospatial
features from one part of a city and predicting the traffic
condition at any time for another part in China. The sys-
tem is trained from crawled live traffic data and POIs from
Baidu map and shows the prediction results on a web demo
based on OpenStreetMap platform. This type of cross-area
prediction is very useful when no historical traffic data for a
place is available, such as in urban planning.

We address the multi-class imbalance issue by using a
weighted linear SVM as our primary model, and achieves
prediction accuracy on par with the prediction given by
Baidu Map itself, which possesses larger and finer grained
data such as traffic speed.
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Understanding congested travel in urban areas. Nature
communications, 7:10793, 2016.

[7] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. LIBLINEAR: A library for large linear
classification. JMLR, 9:1871–1874, 2008.

[8] S. Ishak, C. Alecsandru, and G. Student. Optimizing
traffic prediction performance of neural networks
under various topological, input, and traffic condition
settings. J. of Trans. Eng., 130(4):452–465, 2004.

[9] G. Lee. Eviltransform.
https://github.com/googollee/eviltransform/, 2015.

[10] J. W. C. V. Lint, S. P. Hoogendoorn, and H. J. V.
Zuylen. Accurate freeway travel time prediction with
state-space neural networks under missing data.
Transportation Research Part C Emerging
Technologies, 13(5-6):347–369, 2005.

[11] R. S. Marshment, R. C. Dauffenbach, and D. A. Penn.
Short-range intercity traffic forecasting using
econometric techniques. ITE Journal, 66(2):37,40–43,
1996.

[12] E. Osuna, R. Freund, and F. Girosi. Support vector
machines: Training and applications. 1997.

[13] S. J. Pan and Q. Yang. A survey on transfer learning.
IEEE TKDE, 22(10):1345–1359, 2010.

[14] Y. Qi and S. Ishak. A Hidden Markov Model for short
term prediction of traffic conditions on freeways.
Transportation Research Part C: Emerging
Technologies, 43:95–111, 2014.

[15] Y. Ren, M. Ercsey-Ravasz, P. Wang, M. C. González,
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