
 

 

 

 

 

SHANGHAI JIAO TONG UNIVERSITY 

学士学位论文 
BACHELOR’S THESIS 

 

 

 

 

 

 

 

论文题目：Traffic Prediction for Urban Planning                        
 

 

学生姓名:          许方正           

学生学号:       5120309679        

专    业:     计算机科学与技术     

指导教师:       朱其立教授        

学院(系):  电子信息与电气工程学院   



 

                             

Traffic Prediction for Urban Planning 

 

城市规划中的道路交通预测 

摘要 

 

 在本文我们尝试通过实现两个目标来解决城市规划中的道路交通预测问题。其中之一

是利用机器学习算法提取特征，训练模型，并预测交通状况。另一个则是实现了一个预测

系统，使得永和可以编辑、浏览地图，并预测交通，将结果可视化展现在原地图界面上。

我们介绍了许多我们使用的不同数据来源，包括开放地图数据 OpenStreetMap，还有百度地

图的实时交通数据和兴趣点（POI）信息，百度地图不是开放的，我们通过爬取、解析这些

栅格图像数据获得信息。接下来我们讨论了有关特征工程的一般想法，并介绍了预测使用

的三类特征。利用外界第三方有关地点热度的数据源，并使用了 Affinity Propagation 算法聚

类，A*搜索算法等等来挖掘提取某些非本地的特征。随后介绍了模型选择比较和训练，测

试和评估等。我们使用多分类的支持向量机（SVM）分类器。最后，我们详细介绍了我们

预测系统从后端接口到前端界面的设计与实现。我们还证明了我们的特征和模型以及系统

都有能力以较好的准确度，以道路网络，兴趣点，其他空间地理数据，以及时空数据和非

空间数据作为输入，预测未来交通状况。 

 

关键词：交通预测，城市规划，支持向量机（SVM），Affinity Propagation，A*搜索算法， 

OpenStreetMap，时空数据挖掘 



Traffic Prediction for Urban Planning

Traffic Prediction for Urban Planning

ABSTRACT

We try to solve the traffic prediction in urban planning by achieving two tasks in this

thesis, one is the machine learning algorithms that extract the features, train the model

and predict the traffic situation with given input features; while the another is the im-

plementation of a backend system and web application that enables user to edit and

browse the map while predict and visualize the prediction result as an extra layer on

original map. We introduced various type of data sources we use, like OpenStreetMap

that is freely and publicly available or the Baidu Map’s real-time traffic and POI data

that require crawling, parsing and decoding raster image geospatial data. Next we dis-

cussed our general thoughts about feature engineering and stated three types of features

used for prediction. We designed methods to reference external data sources about lo-

cation popularity and uses Affinity Propagation clustering and A* routing algorithms

while extracting non-local features. Then our model selection comparison and training,

testing and evaluation process is introduced. We use multi-class linear SVM classifier.

Finally, we go through the design and implementation details of our prediction system

from the backend to the demo interface. We also show that our feature and model as

well as the system is capable of predicting future traffic at a good accuracy with road

network, points of interest and other spatial data, along with temporal and other related

non-spatial data as input.

Keywords: Traffic prediction, Urban planning, Support vector machine (SVM), Affin-

ity propagation, A* search algorithm, OpenStreetMap, Spatial-temporal data mining



Traffic Prediction for Urban Planning

Contents

1 Introduction 1
1.1 Motivation and Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 About OpenStreetMap . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Data Collection 4
2.1 Raw Map Data – from OSM . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Traffic Data – from Baidu Map . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Points of Interest – from Baidu Map . . . . . . . . . . . . . . . . . . . 11

3 Feature Extraction 14
3.1 Overview of the Machine Learning . . . . . . . . . . . . . . . . . . . . 14
3.2 Introduction to Feature Engineering . . . . . . . . . . . . . . . . . . . 16
3.3 Local Geospatial Features . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Clustering and Routing – Non-Local Geospatial Features . . . . . . . . 21

3.4.1 Obtaining Data for Clustering . . . . . . . . . . . . . . . . . . 23
3.4.2 Clustering the Data Collected . . . . . . . . . . . . . . . . . . 25
3.4.3 Routing between Functional Areas . . . . . . . . . . . . . . . . 32

3.5 Non-Geospatial Implicit Features . . . . . . . . . . . . . . . . . . . . . 38
3.6 Summary of Collected Features . . . . . . . . . . . . . . . . . . . . . . 39

4 Model and Test Result 43
4.1 Overview of Model Selection . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Support Vector Machines (SVMs) . . . . . . . . . . . . . . . . . . . . 46
4.3 Training Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1 LIBSVM and LIBLINEAR . . . . . . . . . . . . . . . . . . . . 48
4.3.2 Processing Extracted Features . . . . . . . . . . . . . . . . . . 49
4.3.3 Imbalanced Dataset . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.4 Training Process . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Testing Result and Evaluation . . . . . . . . . . . . . . . . . . . . . . 56

5 Implementation 62
5.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Map Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Tile Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 Prediction Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5 Frontend Showcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Conclusion 75



Traffic Prediction for Urban Planning

References 77



Traffic Prediction for Urban Planning

Chapter 1 Introduction

1.1 Motivation and Goal

Traffic problems poses a great pressure on urban planning. Nowadays, as the number of

vehicles in cities becoming larger and larger, traffic jams and accidents are more com-

mon and frequent. Thus, it is necessary that we look deep into the underlying cause and

effect as well as simulation and prediction of the traffic flow under different situations.

It can help urban planners to optimize roads and arrange land use for traffic, and predict

the traffic in certain future time for users to better arrange their itinerary and routes.

The goal of this project is to develop algorithms, framework and a system to predict

traffic conditions on any roads given a map formatted in OpenStreetMap data. The

inputs to the problem include, the topological map data, time of the day, day of the

week, location and the weather condition, etc. The output will be classified into 4 class

labels: green (good), yellow (slow), red (congested) and deep red (extremely congested).

This project will produce a web demo which is efficient and user friendly. We shall dig

into various types of machine learning and data mining models, as well as simulation

methods, mostly focusing on spatial-temporal data. By comparing those methods and

fine-tuning the parameters, we would conclude the combinations that our system uses

and reveal insights on the principle of how population move in urban areas. Also, as an

engineering project, a system and a demo with interactive functionality that may be able

to be put into industry is crucial.

1.2 Related Work

There are much work done by other researchers and industries because it is a real world

issue that demand solution and will have great impact and contribution to predict traffic

for people better traveling and relieve the heavy traffic by distributing people smartly.

In industry, domestically, there are large tech companies like Baidu Map, which already

have the functionality to predict traffic status of major roads at upcoming time, but few

1



Traffic Prediction for Urban Planning

services for predicting and evaluating traffic given a completely new urban planning

map exists. Many papers from Microsoft Institutes as well as MIT, have posed similar

problem while proposing approaches like simulating by implementing network method,

machine learning and even deep learning methods for prediction, which is a promising

way for our problem too. Research work are done to tackle this problem from many dif-

ferent aspects. Çolak et al. (2016) and Simini et al. (2012) investigated and researched

the underlying mobility pattern and understand the reasons of congested travel in ur-

ban areas. Schnitzler et al. (2014); Qi and Ishak (2014) proposed the usage of Hidden

Markov Model as well as Gaussian Process in traffic prediction. Ren et al. (2014) pre-

dicts commuter flows in spatial networks using a radiation model based on temporal

ranges. Xu et al. (2015,?) used spatial-temporal traffic prediction method. Pan et al.

(2012); Mchugh (2015) utilize big data or real world transportation data for traffic pre-

diction and visualization. Xu et al. (2014) proposed accurate and interpretable bayesian

MARS for traffic flow prediction. Horvitz et al. (2012) studied methods, designs, and

study of a deployed traffic forecasting service, which is a system similar to ours except

they use self-deployed data source.

1.3 About OpenStreetMap

This is the main data source of our map data, apart from the historical traffic data from

BaiduMaps. OpenStreetMap Coast (2004) is built by a community of mappers that con-

tribute and maintain data about roads, trails, cafés, railway stations, and much more, all

over the world. OpenStreetMap emphasizes local knowledge. Contributors use aerial

imagery, GPS devices, and low-tech field maps to verify that OSM is accurate and up

to date. OpenStreetMap’s community is diverse, passionate, and growing every day.

Our contributors include enthusiast mappers, GIS professionals, engineers running the

OSM servers, humanitarians mapping disaster-affected areas, and many more. Also, the

most important consideration of choosing OpenStreetMap as a data source is because it

is open data: one are free to use it for any purpose as long as one credits OpenStreetMap

and its contributors. If you alter or build upon the data in certain ways, you may dis-

tribute the result only under the same license, licensed under the Open Data Commons

2



Traffic Prediction for Urban Planning

Open Database License (ODbL) by the OpenStreetMap Foundation (OSMF) while The

cartography in our map tiles, and our documentation, are licensed under the Creative

Commons Attribution-ShareAlike 2.0 license (CC BY-SA).

1.4 Thesis Organization

In this thesis, we introduced a system that could be predicting future road traffic sit-

uations under given urban planning road network and point of interests as well as the

given future time point etc. In chapter 2 the method and sources of data collection and

crawling are introduced. In chapter 3, we mainly talk about the feature engineering

and experimenting with different characteristics of the geospatial data. In chapter 4,

we briefly introduce the machine learning and data mining model we used in the sys-

tem, as well as the training and testing process, followed by the test result evaluations.

Comparison with the baseline provided by Baidu Maps’prediction is presented. Next,

in chapter 5, the implementation of our system is thoroughly introduced, with emphasis

on the architecture along with the most important prediction engine, and the demo is

shown. Finally, in chapter 6 we come to a conclusion of this project.

3



Traffic Prediction for Urban Planning

Chapter 2 Data Collection

2.1 Raw Map Data – from OSM

Data is essential while building the machine learning model and engineering the system.

Our raw map data are all downloaded directly from the open-source OpenStreetMap

daily data dump, available at http://planet.osm.org/ as both a full dataset and a

weekly change-set of the planet, showing all the updates that have been made to the

planet by contributors. Since in the current stage of the project, all we are interested

only in a small area of Eastern China containing Shanghai Municipality, we have used

the http://extract.bbbike.org/, with the same data via the OpenStreetMap API

for downloading our raw map data, where the customizable bounding box selection

data export is available. The imported bounding box area starts from the south-west

corner of approximately longitude 120.027°, latitude 30.551° to the north-east corner of

approximately longitude 122.217°, latitude 31.805°.

The data format in the example data file Figure 2.2 is named as OSM XML format,

a format for storing vector map road raw data. First of all, it is XML, XML is a so called

meta format to provide even human readable data interexchange formats. Various file

formats use this data tree structure to embed their data. The major tools in the OSM

universe use an XML format following a XML schema definition that was first used by

the API only. Basically it is a list of instances of our data primitives (nodes, ways, and

relations). The contents of the file format include the following several parts:

• an XML suffix introducing the UTF-8 character encoding for the file

• an OSM element, containing the version of the API (and thus the features used)

and the generator that distilled this file (e.g. an editor tool)

• a block of nodes containing especially the location in theWGS84 reference system

• the tags of each node

• a block of ways

4

http://planet.osm.org/
http://extract.bbbike.org/


Traffic Prediction for Urban Planning

Figure 2.1 The bounding box area of the OSM data dump export

• the references to its nodes for each way

• the tags of each way

• a block of relations

• the references to its members for each relation

• the tags of each relation

Elements are the basic components of OpenStreetMap’s conceptual datamodel of the

physical world, also called the data primitives. They consist of nodes (defining points

in space), ways (defining linear features and area boundaries), and relations (which are

sometimes used to explain how other elements work together). All of the above can

have one of more associated tags (which describe the meaning of a particular element).

A node represents a specific point on the earth’s surface defined by its latitude and

longitude. Each node comprises at least an id number and a pair of coordinates. Nodes

can be used to define standalone point features. For example, a node could represent a

5



Traffic Prediction for Urban Planning

Figure 2.2 The OpenStreetMap OSM data format example

6



Traffic Prediction for Urban Planning

park bench or a water well. Nodes are also used to define the shape of a way. When

used as points along ways, nodes usually have no tags, though some of them could.

For example, highway=traffic_signals marks traffic signals on a road, and power=tower

represents a pylon along an electric power line. We mainly use nodes individually and

separately to represent point features, like POIs (points of interests). A node can be

included as member of relation. The relation also may indicate the member’s role: that

is, the node’s function in this particular set of related data elements.

A way is an ordered list of between 2 and 2,000 nodes that define a polyline. Ways

are used to represent linear features such as rivers and roads. Ways can also represent the

boundaries of areas (solid polygons) such as buildings or forests. In this case, the way’s

first and last node will be the same. This is called a “closed way”. Note that closed ways

occasionally represent loops, such as roundabouts on highways, rather than solid areas.

The way’s tags must be examined to discover which it is. What we mainly focus on and

utilize are the ways with specific tag highway=*, where The highway tag is the main tag

used for identifying any kind of road, street or path. The highway type helps indicate

the importance of the highway within the road network as a whole. Areas with holes,

or with boundaries of more than 2,000 nodes, cannot be represented by a single way.

Instead, the feature will require a more complex multi-polygon relation data structure.

A relation is a multi-purpose data structure that documents a relationship between

two or more data elements (nodes, ways, and/or other relations). Examples include:

A route relation, which lists the ways that form a major (numbered) highway, a cycle

route, or a bus route. A turn restriction that says you can’t turn from one way into

another way. A multi-polygon that describes an area (whose boundary is the ’outer

way’) with holes (the ’inner ways’). Thus, relations can have different meanings. The

relation’s meaning is defined by its tags. Typically, the relation will have a ’type’ tag.

The relation’s other tags need to be interpreted in light of the type tag. The relation is

primarily an ordered list of nodes, ways, or other relations. These objects are known as

the relation’s members. Each element can optionally have a role within the relation. For

example, a turn restriction would have members with “from” and “to” roles, describing

the particular turn that is forbidden. A single element such as a particular way may

7



Traffic Prediction for Urban Planning

appear multiple times in a relation.

Besides the basic nodes and ways, our information also requires from another im-

portant part of the data format, other than just longitude and latitude, and that is the tags

of those basic elements. All types of data element (nodes, ways and relations) can have

tags. Tags describe the meaning of the particular element to which they are attached.

A tag consists of two free format text fields; a ’key’ and a ’value’. Each of these are

Unicode strings of up to 255 characters. For example, highway=residential defines the

way as a road whose main function is to give access to people’s homes. There is no fixed

dictionary of tags, but there are many conventions documented on the OpenStreetMap

wiki. If there is more than one way to tag a given feature, it’s probably best to use the

most common approach.

2.2 Traffic Data – from Baidu Map

The second part of the raw data collection is clearly the traffic situations, both currently

and historically, on all the roads in the road network that we have previously downloaded

and constructed from OpenStreetMap data. It is main drawback that such open source

mapping service like OpenStreetMap does not provide such data, mainly because that

the data source of traffic data is often acquired from taxi or drive GPSs as well as the

authorities’traffic monitoring. So we need a third party data provider with most reliable

traffic data. As themain study area is Shanghai now, after investigating various real-time

traffic information provider, including GoogleMaps, AutoNavi and BingMaps, etc., we

came to the decision of using Baidu Maps as the source, because it is the biggest map

provider and application with most users. In Figure 2.3, the traffic situation information

is shown in the form of the green line as clear, yellow line as slow, red as congested

and deep red as extremely congested. After digging and checking the network requests

in the Baidu Maps webpage, there are two APIs in Baidu Maps that are useful for our

purpose of getting traffic information data.

• The first API is in the form of http://online1.map.bdimg.com/onlinelabel/

?qt=tile&x=13204&y=3550&z=16, see Figure 2.4 for response.

8

http://online1.map.bdimg.com/onlinelabel/?qt=tile&x=13204&y=3550&z=16
http://online1.map.bdimg.com/onlinelabel/?qt=tile&x=13204&y=3550&z=16


Traffic Prediction for Urban Planning

Figure 2.3 Traffic information on Baidu Map

Figure 2.4 A 256*256 px tile from Baidu Map

9



Traffic Prediction for Urban Planning

Figure 2.5 A traffic tile from Baidu Map, at the same place in Figure 2.4

• The secondAPI is in the form of http://its.map.baidu.com:8002/traffic/

TrafficTileService?level=16&x=13204&y=3550&time=1464020567811, see

Figure 2.5 for response.

As you can see, the first API retrieves the tile image of the Baidu Map at given place

(defined as tile coordinate x and y) and given zoom z. The second API is the traffic tile

image overlayAPI that provides a PNG imagewith just polylineswith color representing

the traffic situation, with given x, y, z, along with a time parameter. We have a crawler

that continuously download those data of the whole Shanghai urban area, getting tiles

at zoom level 18 and composes all of those small tiles and traffic overlay into a large

image. Because all the retrieve data are in raster image format, the next step would be

parsing them using some image processing libraries.

We first get the ways from our previously dumped OpenStreetMap data, each way

in the OSM data contains a series of nodes, with longitude and latitude, and those nodes

connected following certain sequence number forms the roads and ways in the map. We

interpolate some points between consecutive nodes connected, and get the coordinates

of those inWGS-84 format. A simple API is also provided by Baidu to convertWGS-84

10

http://its.map.baidu.com:8002/traffic/TrafficTileService?level=16&x=13204&y=3550&time=1464020567811
http://its.map.baidu.com:8002/traffic/TrafficTileService?level=16&x=13204&y=3550&time=1464020567811


Traffic Prediction for Urban Planning

(the international standard) coordinates to BD-09 (a proprietary coordinated system used

exclusively at BaiduMaps). After that conversion, we could transform the longitude and

latitude to the Point Coordinates (x, y given z = 18) of Baidu Maps, and then use simple

formula to calculate the exact pixel coordinates in the downloaded traffic tile images.

Then we use naïve algorithm that find pixels within a distance threshold in terms of

pixels from the sample point calculated above. If the point node belongs to a way that is

one way tagged, then the search ends after only one color line found within threshold.

Otherwise, two colored lines in most proximity to the point in direction orthogonal to the

direction of the way are searched and found within threshold. Assigning those color line

pixel matching results to the sample line would finish the task of parsing the raster image

format of traffic data, and save them accordingly for later training use. See Figure 2.6

for an example processing result of the raster image traffic data. Some black dots that

are not on the road are some other type of way nodes, like subway line which we are not

taking care of.

2.3 Points of Interest – from Baidu Map

Though as an open data map service, OpenStreetMap provides some points of interest

contributed by volunteers, but in mainland China, as the service is not popular and little

know, the POIs are so sparse and scarce that nearly only a few POIs could be found

in the most populated area of Shanghai. Because of this situation, we again turned to

Baidu Maps for help, as it generously provides developers with a place query API that

enable us to query places with given category tag of the POI within certain area defined

by longitude and latitude bounding box. We used the following method to query all

the POIs of all types and categories, both level 1 and level 2, in a recursive manner:

first query the bounding box of all Shanghai area, and if the returned result is equal the

API’s maximum result limit, then split the bounding box into four, cutting half on each

dimension adding small overlapping margin, until returned places lowered below the

limit. After downloading all the POI data using Baidu Maps API, we processed the data

with a script, removing the duplicates and then load all the data into our database, each

place as a node mentioned earlier, with tags source=baidu and poitype=* and longitude

11



Traffic Prediction for Urban Planning

Figure 2.6 An example traffic parsing process of part of the area. The back-
ground is the image crawled andmerged from several traffic tiles fromBaiduMap.
Black dots are all the nodes from our OpenStreetMap database mapped onto the
location of Baidu Map. The red and blue dots are the parsing result of the image
searching for each node’s nearby color line pixel representing traffic information,
and two of them in a pair denoting they are two directions of a two-way road

12



Traffic Prediction for Urban Planning

and latitude. Note that because the coordinate system of Baidu Maps and the real world

coordinates used by OpenStreeMap differs, a conversion is required from BD-09 to

WGS-84, but with an error of about 0.5 meters.

13



Traffic Prediction for Urban Planning

Chapter 3 Feature Extraction

3.1 Overview of the Machine Learning

Before going deep into any details of features, we shall introduce some basic ideas on

the type of the problem and solution, machine learning. The project we are currently

talking about is in fact a machine learning project, or say data mining project, which is

connected in many ways. The problem itself can be abstracted be treated using various

machine learning algorithms.

Machine learning is a subfield of computer science that evolved from the study of

pattern recognition and computational learning theory in artificial intelligence. In 1959,

Arthur Samuel defined machine learning as a “Field of study that gives computers the

ability to learn without being explicitly programmed”. Machine learning explores the

study and construction of algorithms that can learn from and make predictions on data.

Thy actually operate by building a model from example inputs in order to make data-

driven predictions or decisions expressed as outputs, rather than following strictly static

program instructions. Machine learning is closely related to and often overlaps with

computational statistics; a discipline which also focuses in prediction-making through

the use of computers. It has strong ties to mathematical optimization, which delivers

methods, theory and application domains to the field. Machine learning is used widely

in computing tasks where finding explicit algorithms is not feasible. Machine learning

is sometimes conflated with data mining, where the latter sub-field focuses more on

exploratory data analysis and is known as unsupervised learning. To summarize, in

machine learning, we are more focused on the problem of optimizing the goal, while

not required to find out the cause and effect behind. It is more like a black box process,

in which the induction of the problem is done without investigating deduction. That is

the main difference in my opinion compared to traditional artificial intelligence.

On the other hand, however, our problem can also be defined as a data mining prob-

lem, since our data is quite vast and large amount, but the underlying information is

14



Traffic Prediction for Urban Planning

really not revealed completely. Data mining, as seen in its name, have a few outstand-

ing characteristics:

• Automated prediction of trends and behaviors. Data mining automates the process

of finding predictive information in large databases. Questions that traditionally

required extensive hands-on analysis can now be answered directly from the data

quickly.

• Automated discovery of previously unknown patterns. Data mining tools sweep

through databases and identify previously hidden patterns in one step.

In our project, we are both discovering the cause and effect in the context of urban

planning and mapping with the traffic density consequences, along with the task of pre-

dicting the future using historical data. Data mining techniques can yield the benefits

of automation on existing software and hardware platforms, and can be implemented

on new systems as existing platforms are upgraded and new products developed. When

data mining tools are implemented on high performance parallel processing systems,

they can analyze massive databases in minutes. Faster processing means that users can

automatically experiment with more models to understand complex data. High speed

makes it practical for users to analyze huge quantities of data. Larger databases, in turn,

yield improved predictions. So the data collection progress described in previous chap-

ter is still up and running, crawling the data every 30 minutes. Only with more data

and more features getting engineered, the better result we could have. It is actually the

dimension of the database that matters.

We could use an example on database to say that features and data instances can be

larger in both depth and breadth:

• More columns. We must often limit the number of variables they examine when

doing hands-on analysis due to time constraints. Yet variables that are discarded

because they seem unimportant may carry information about unknown patterns.

High performance data mining allows users to explore the full depth of a database,

without preselecting a subset of variables.

15



Traffic Prediction for Urban Planning

• More rows. Larger samples yield lower estimation errors and variance, and allow

users to make inferences about small but important segments of a population.

3.2 Introduction to Feature Engineering

Having been familiar with the history and differences between the subfields in the whole

machine learning field, we can to some extent categorize this project on predicting the

traffic situation at any future time given any map compositions into a machine learn-

ing problem categories because we have the process of training and modeling with hu-

man interference and knowledge, which is basically classification problem in super-

vised learning, while also seeking to predict and find patterns by raw data amounts

and computing power. So in this chapter we shall mainly introduce the methods and

goals for feature extracting and feature engineering, which is the most important thing

a researcher could do when tackling real world problems with existing model. That is

applicable rule in most of the cases since features you extracted contributes largely to

the final prediction result.

To make an input data set for later training and testing, we need to dig deep into

the collected data, both in massive amount and high dimensions. This is called feature

extraction and we could not just feed all the raw data into the model training because

that would be impossible to grab the potential pattern and cause and effect, also impos-

sible for the computing power we currently have. Our data are like a huge graph with

nodes and connected edges, while edges and nodes have their tags and weights. We

need a process that could extract and output the features that is useful for this particular

goal, predicting the traffic in the future and in case of mapping changes. Only after

that we could feed those much smaller and denser data into training process. In ma-

chine learning, feature extraction starts from an initial set of measured data and builds

derived values (features) intended to be informative and non-redundant, facilitating the

subsequent learning and generalization steps, and in some cases leading to better human

interpretations. Feature extraction is related to dimensionality reduction. When the in-

put data to an algorithm is too large to be processed and it is suspected to be redundant,

then it can be transformed into a reduced set of features (also named a features vector).

16



Traffic Prediction for Urban Planning

This process is called feature selection. The selected features are expected to contain the

relevant information from the input data, so that the desired task can be performed by

using this reduced representation instead of the complete initial data. Feature extraction

involves reducing the amount of resources required to describe a large set of data. When

performing analysis of complex data one of the major problems stems from the num-

ber of variables involved. Analysis with numerous variables generally requires a large

amount of memory and computation power, also a classification algorithm sometimes

causes a common problem that it tend to over-fit to training samples, so that generalize

poorly to new samples. Feature extraction is a general term for methods of constructing

combinations of the data variables to avoid these problems while still describing the data

with sufficient accuracy. The best results are often achieved when an expert constructs

a set of application-dependent features, a process called feature engineering.

Feature engineering is the process of using domain knowledge of the data to cre-

ate features that make machine learning algorithms work and it is fundamental to the

application of machine learning, and is both difficult and expensive. Manual feature

engineering’s necessity can be replaced by automated feature learning. Feature engi-

neering is an informal topic, but it is considered essential in applied machine learning.

Actually like Andrew Ng said in his Machine Learning and AI via Brain simulations,

coming up with features is difficult, time-consuming, requires expert knowledge. “Ap-

plied machine learning” is basically feature engineering. We have exact feeling when

doing our job, and actually that is why there is a chapter specified for this. As a human

being, we have some roles when applying machine learning. Machine learning provides

you with extremely powerful tools for decision making but until a breakthrough in AI,

the role of the developer’s decision will still be crucial. Our responsibility includes set-

ting up the correct problem to be optimized (it’s far from straightforward in the real

world), choosing a model, choosing a learning algorithm (or a family of algorithms),

finding relevant data, designing features, feature representation, feature selection, etc.

Two components in feature engineering is that: first, understanding the properties of the

task you’re trying to solve and how they might interact with the strengths and limitations

of the model you are going to use, and second, experimental work where you test your

17



Traffic Prediction for Urban Planning

expectations and find out what actually works and what doesn’t.

3.3 Local Geospatial Features

While digging on the information we have and brainstorming to achieve a list of fea-

tures that may become useful, the first set of features that comes into our mind is the

information that could best describe the local situation of a given place or point. For ex-

ample, the road network density in proximity of the node. If the road is along with a lot

of crossings with other roads in a relatively small length, it means that there may exists

many traffic lights and will inevitably slow the traffic down. The denser network would

also imply that many cars will tend to turn right or left other than just going straight. As

what we are always trying to do is finding out what may affect the traffic behavior in

such a small area, the local features are really important and worth standing out. So we

calculated the average distance between the road crossing nodes in both directions from

the node. It is trivial by using a formula to calculate the earth distance given two nodes’

coordinates.

Besides the road network density described as the average distance of each road

crossing with others, both forward and backward direction, we would also take POIs

into great account. If you think the people living in a city’s behavior thouroghly, it is

actually the points of interests like buildings for work and shopping mall for shopping

as well as restaurants for dining that matters the most and affects when and where the

people would like to drive to. So the local features on what is besides or near the node on

the way is significant. People do go to a specific place or road for some good reasons!

From the Baidu Maps points of interest data which we have crawled before, we have

manually re-categorized the Baidu’s POI types into our own, a total of 37 types. We did

investigate the typing hierarchy that Baidu provides and since it is a 2 level tree format,

we merged some of the types and also deleted some of the less important ones regarding

the behavior of people who drove cars. Then we select all the second level types as ours.

In Table 3.1 there is the original Baidu Maps category tree, and refer to Table 3.2 for

more details on our redesigned POI types. All the categories in the second level column

is taken.

18



Traffic Prediction for Urban Planning

Table 3.1 Original Baidu Maps POI category hierarchy

First Level Categories Second Level Catagories

美食 中餐厅、外国餐厅、小吃快餐店、蛋糕甜品店、咖啡厅、

茶座、酒吧

酒店 星级酒店、快捷酒店、公寓式酒店

购物 购物中心、超市、便利店、家居建材、家电数码、商铺、

集市

生活服务 通讯营业厅、邮局、物流公司、售票处、洗衣店、图文

快印店、照相馆、房产中介机构、公用事业、维修点、

家政服务、殡葬服务、彩票销售点、宠物服务、报刊亭、

公共厕所

丽人 美容、美发、美甲、美体

旅游景点 公园、动物园、植物园、游乐园、博物馆、水族馆、海

滨浴场、文物古迹、教堂、风景区

休闲娱乐 度假村、农家院、电影院、KTV、剧院、歌舞厅、网吧、

游戏场所、洗浴按摩、休闲广场

运动健身 体育场馆、极限运动场所、健身中心

教育培训 高等院校、中学、小学、幼儿园、成人教育、亲子教育、

特殊教育学校、留学中介机构、科研机构、培训机构、

图书馆、科技馆

文化传媒 新闻出版、广播电视、艺术团体、美术馆、展览馆、文

化宫

医疗 综合医院、专科医院、诊所、药店、体检机构、疗养院、

急救中心、疾控中心

汽车服务 汽车销售、汽车维修、汽车美容、汽车配件、汽车租赁、

汽车检测场

交通设施 飞机场、火车站、地铁站、长途汽车站、公交车站、港

口、停车场、加油加气站、服务区、收费站、桥

金融 银行、ATM、信用社、投资理财、典当行

19



Traffic Prediction for Urban Planning

房地产 写字楼、住宅区、宿舍

公司企业 公司、园区、农林园艺、厂矿

政府机构 中央机构、各级政府、行政单位、公检法机构、涉外机

构、党派团体、福利机构、政治教育机构

Table 3.2 Our redesigned POI category hierachy, second level types taken

First Level Categories Second Level Catagories

交通设施 停车场、公交车站、加油加气站、地铁站、收费站、服

务区、桥、港口、火车站、长途汽车站、飞机场

休闲娱乐 休闲娱乐

公司企业 公司、农林园艺、厂矿、园区

医疗 医疗

房地产 住宅区、写字楼、宿舍

政府机构 政府机构

教育培训 高等院校、其他

文化传媒 文化传媒

旅游景点 海滨浴场、游乐园、风景区、其他

美食 美食

购物 小（便利店，商铺）、大（其他）

运动健身 体育场馆、健身中心、极限运动场所

酒店 酒店

金融 金融服务

其他 其他

The features we designed for POIs are in combination of the nearby road crossings

related to the previously discussed average distance. In this set of features, we proposed

that the POI density of both the current node and the forward and backward nodes located

in the next or last road crossing shall have a role. We counted the number of each type

of the points of interest around 200 meters away within the node. Such density counting

20



Traffic Prediction for Urban Planning

with the same radius parameter is also done for the next 1, 2 and 3 road crossing nodes

in both forward and backward directions, as well as the next crossing nodes in the road

network both left and right to the direction of the current node’s segment. So in total

there is 37 types of points of interest for each node, and one given node have 3 level

forward crossing point, 3 level backward crossing point, 1 left and 1 right direction

crossing nodes, there are 37 ∗ 8 = 296 features being related and attached for each

node. It takes a vast majority of our extracted feature list, and by such combination of

minor features, there is already cause redundancy, but we considered its importance of

preserving information in an obvious way crucial and we can afford to calculate.

3.4 Clustering and Routing – Non-Local Geospatial Features

As stated in the above section, the local features already play a large part of the roles

in the features. However, not all traffic problems and behaviors are only related to the

locality of the place where all the cars and traffic goes through. Actually we need to

figure out a way to describe and better understand the driver’s motivation and habits.

People do not just drive around the city finding the shops or the supermarkets on the

sides of the road, they drive every day to work and back home. These commuters are

making up a large portion the traffic jam that happens every day on rush hours like in the

morning or in the late afternoon on elevated roads, highways, etc. Taking an example in

Shanghai for example, many people lives in the suburban areas that is outside the outer

ring road of the city. Most of the large companies that is really having large numbers of

employees are most possibly located in the urban area inside the middle ring road. A

long journey and distance for commuters is a great example showing that local geospatial

data are not enough. It does not capture the potential information of where the people

would most likely come from and where would they most likely. Temporal data also

affecting the problem. In the weekdays, rush hours’drivers contribute to the most of the

traffic jam situations, on the other hand, in the weekend, many people would stay in

some shopping mall and going out to the city center to have a nice dinner. The peak

travelling hours are varying and changing.

After proposing that local features are not sufficient, we need to figure out a quan-

21



Traffic Prediction for Urban Planning

titative set of features that best describe the driver’s preference on roads. Some roads

will get really crowded and slow because too many drivers are going to choose the route

including the road. For example, every morning and late afternoon, the S4 Hujing Ex-

pressway and Humin Elevated Road are both under heavy traffic because there are many

people living in the Minhang District of Shanghai, which is a large place for residential

areas. The road is also the easiest road to drive that connects the urban area of Xujiahui

District, which has all the commercial buildings and shopping malls. Examples like this

exists in all aspects of urban life and are quite common. Actually most people on the

road lives in the similar place and go to work or eat in the similar places too, and because

of the clustering property of human society and urban planning, that gives one of the

reasons why roads are crowded. That is we need to identify the “functional areas”in the

city that has three types of functionality: shopping, residential and commercial.

In order to solve this, we need to first find out where people usually live, which is

the residential area in the city; where people usually drive to work, which is the business

area in the city; and where people usually dine outside and go shopping, which is the

commercial area in the city. We need to find out those large clustered points of interest

by using clustering algorithms which prevails in the data mining fields.

Clustering the scattered data is among one of the most important unsupervised learn-

ing problem. Its main goal is deals with finding a structure in a collection of unlabeled

data, which could also be described as “the process of organizing objects into groups

whose members are similar in some way”. A cluster is therefore a collection of objects

which are “similar”between them and are “dissimilar”to the objects belonging to other

clusters. See Figure 3.1 for a graphical example:

We can easily see in the figure that easily the data can be divided into 4 clusters.

The similarity criterion in this case is distance: two or more objects belong to the same

cluster if they are “near” each other according to a given distance which is geometrical

distance in this case, also known as distance-based clustering. The goal of clustering

is to determine the intrinsic grouping in a set of unlabeled data. But in order to decide

what constitutes a good clustering, we show that there exists no absolute best criterion

independent of the final goal of the clustering. As a result, it is us who must supply this

22



Traffic Prediction for Urban Planning

Figure 3.1 An example of clustering process

criterion that the result of the clustering will suit the needs.

3.4.1 Obtaining Data for Clustering

Before trying out a variety of the clustering algorithms we have currently, we need to

collect the raw data first and then apply those algorithms to them. Currently in our

database, we have the OpenStreetMap’s geospatial data like road network maps, and

the nodes (which we also call them points of interest) crawled, processed and loaded

into the database. It seems that we already have solid knowledge base on the sheer

number of POIs we have now. However, we lack the popularity of the points of in-

terest information. We wanted to know how many people and how frequently people

would go to the specific shopping mall or which building have large amounts of employ-

ees that work there. An approach is designed to solve this lack of knowledge problem

by cross referencing and collaborate with crawled data of other websites. In our case,

we used two external data source, Dianping.com and place.weibo.com, which is both

very popular among Chinese people and have a large user base. We primarily used the

Dianping.com for the extensive categorical points of interest information of the names,

address, rating, price as well as the comments and number of comments of the point. We

wrote a Python crawler script to crawl a whole set of data from Dianping.com, mainly

23



Traffic Prediction for Urban Planning

Figure 3.2 An example page of the POI listings of business sites in Shanghai on
Dianping.com

consisting 3 types of the functional areas: shopping malls, residential areas and com-

merce buildings in Shanghai. See Figure 3.2 for an example page with information of

the places.

After we obtained the places in Shanghai from Dianping.com, we can parse the in-

formation of each place obtained. A special program is written to parse the Chinese

address shown in the webpage, and extracts only the road name and city name in it. It

is actually an address parser using extensive regular expressions to match the address in

format that could extract the name of road. The reason for this is to have a better link

between the name and address, and better support fuzzy matching while later searching

24



Traffic Prediction for Urban Planning

on Weibo Place. Normally there are many shops and restaurants in one shopping mall,

and many companies in one business building, so with the help of address parsing, it is

much more accurate to find all places associated to that large place. Place.weibo.com is

a website for searching location based information that people attached with their status

provided byWeibo, a popular social media network in China, that supports searching the

place with keywords. Its result is useful for us to determine and quantize the popularity

among the people of given place of interest that we obtained earlier in Dianping.com. As

shown in Figure 3.3 the information of the search result of a specific place contains the

number of posts containing the location, and how many people have come here before

and the number of photos users have uploaded.

We search for each of the places in Weibo Place by place name that we obtained

earlier in Dianping.com and filtered the search result with the road name parsed from

the address to ensure that only places with the same address are being counted. The

sum of those numbers of posts, photos, check-ins are saved to output file, which will

be processed to be our data for clustering later. We sorted by the sum as popularity of

the place inside the whole lists of those places, and get a top 1000 most popular list of

places of business sites, residential areas and shopping malls. We have made the plots

of these data as scattered data in geographical coordinates. See Figure 3.4, 3.5 and 3.6

for the distribution and density of each of the 3 functional areas. X-axis dimension is

the latitude and Y-axis dimension is the longitude.

3.4.2 Clustering the Data Collected

Now that we have processed top 1000 most popular lists of three types of places, we

can apply the clustering algorithm to find out the clustered functional areas that we

wanted. Several of the famous and popular clustering algorithms exist, but the methods

of clustering mainly fall into two categories: the first is hierarchical (agglomerative)

that initially, each point is in cluster by itself, and then repeatedly combine the two

“nearest”into one. The second is point assignment, that is it maintains a set of clusters,

and place points into their “nearest”cluster. Many algorithms exist for dealing with such

problems, for example the very famous algorithm called the k-means, as well its variant

25



Traffic Prediction for Urban Planning

Figure 3.3 An example page of the location name search results of Weibo on
place.weibo.com

26



Traffic Prediction for Urban Planning

Figure 3.4 Scattered plot of top business site areas in Shanghai

27



Traffic Prediction for Urban Planning

Figure 3.5 Scattered plot of top shopping mall areas in Shanghai

28



Traffic Prediction for Urban Planning

Figure 3.6 Scattered plot of top residential areas in Shanghai

29



Traffic Prediction for Urban Planning

BFR (Bradley-Fayyad-Reina) algorithms for large dataset and some other hierarchical

clustering methods, DBSCAN, and Gaussian Mixtures, etc. In this case, however, after

studying and experimenting with those algorithms, we selected to use Affinity Propa-

gation algorithm Frey and Dueck (2007). It’s said to be fast, efficient and do not need

to specify the number of cluster beforehand, which suits our case well since we want

fully automatic clustering without knowing how many those different functional areas

there are. It creates clusters by sending messages between pairs of samples until con-

vergence. A dataset is then described using a small number of exemplars, which are

identified as those most representative of other samples. The messages sent between

pairs represent the suitability for one sample to be the exemplar of the other, which is

updated in response to the values from other pairs. This updating happens iteratively

until convergence, at which point the final exemplars are chosen, and hence the final

clustering is given. Affinity Propagation can be interesting as it chooses the number

of clusters based on the data provided. For this purpose, the two important parameters

are the preference, which controls how many exemplars are used, and the damping fac-

tor. The main drawback of Affinity Propagation is its complexity. The algorithm has a

time complexity of the order O(N2T ), where N is the number of samples and T is the

number of iterations until convergence. Further, the memory complexity is of the order

O(N2) if a dense similarity matrix is used, but reducible if a sparse similarity matrix

is used. This makes Affinity Propagation most appropriate for small to medium sized

datasets.

Algorithm description: The messages sent between points belong to one of two cat-

egories. The first is the responsibility r(i, k), which is the accumulated evidence that

sample k should be the exemplar for sample i. The second is the availability a(i, k)

which is the accumulated evidence that sample i should choose sample k to be its exem-

plar, and considers the values for all other samples that k should be an exemplar. In this

way, exemplars are chosen by samples if they are (1) similar enough to many samples

and (2) chosen by many samples to be representative of themselves. More formally, the

30



Traffic Prediction for Urban Planning

responsibility of a sample k to be the exemplar of sample i is given by:

r(i, k)← s(i, k)−max[a(i, ḱ) + s(i, ḱ)∀ḱ ̸= k] (3-1)

Where s(i, k) is the similarity between samples i and k. The availability of sample k to

be the exemplar of sample i is given by:

a(i, k)← min[0, r(k, k) +
∑

í s.t. í/∈{i,k}

r(́i, k)] (3-2)

To begin with, all values for r and a are set to zero, and the calculation of each iterates

until convergence.

In engineering, we used the open source machine learning library called scikit-learn

Pedregosa et al. (2011) which has the affinity propagation algorithm included. So we

simply feed the data in with a small Python script and we have some quite amazing

clustering result. For example, in the clustering of the data of top business sites obtained

earlier, eventually it generates 23 clusters and the Silhouette Coefficient is 0.63. It means

that it works relatively good. If the ground truth labels are not known, evaluation must

be performed using the model itself. The Silhouette Coefficient is an example of such

an evaluation, where a higher Silhouette Coefficient score relates to a model with better

defined clusters. The Silhouette Coefficient is defined for each sample and is composed

of two scores: a: The mean distance between a sample and all other points in the same

class. b: The mean distance between a sample and all other points in the next nearest

cluster. The Silhouette Coefficient s for a single sample is then given as:

s =
b− a

max(a, b)
(3-3)

The Silhouette Coefficient for a set of samples is given as the mean of the Silhouette

Coefficient for each sample. The score is bounded between -1 for incorrect clustering

and +1 for highly dense clustering. Scores around zero indicate overlapping clusters.

The score is higher when clusters are dense and well separated, which relates to a stan-

dard concept of a cluster. For clustering result, we can see Figure 3.7 for the clustered

31



Traffic Prediction for Urban Planning

Figure 3.7 The clustering output by running top business site areas with Affinity
Propagation algorithm, x-axis being Latitude and y-axis being Longitude

output’s plot of the top business sites found. Those clusters are exactly the functional

areas of this particular type that we discussed earlier and at first glance it seems good.

3.4.3 Routing between Functional Areas

In the previous chapter, we used the affinity propagation algorithm to cluster the top

popular points of interest for each type of the three category. At the time we have three

sets of the functional areas of the type business site, residential area and shopping area.

We have the knowledge of where they are located at, since the cluster algorithm returns

an exemplar for representing the whole nearby area. In order to reflect this information

on the road network, we need to find out the connecting routes that people and com-

muters use for going to work and back home as well as to malls for eating and shopping.

Imagine a scenario that a person who lives in Minhang District near Shanghai Jiao Tong

32



Traffic Prediction for Urban Planning

University, is working in a company located at Xujiahui. So his living area is actually

within the functional area of residence, and Xujiahui is both a business site area and

shopping mall area. For his weekdays, he would most probably take the S4 Expressway

and into Humin Elevated Road to get to work, so these highways will be under heavy

traffic during rush hours, making all the nodes and way segments on it a popular way

of choice On Friday night after work for example, he would like to drive to the South

Shanxi Road to have dinner in IAPM shopping mall and shop there with his girlfriend,

so on such a weekend night, he would take Huaihai Road to move from the business

site area to a shopping mall area, and Huaihai Road may become very crowded for this

popularity, and so does the nodes on this road.

In order to find out what ways are popular or not because of the reason that these

nodes and segment on this particular way are the connecting components that lies on

the road among which is crucial in the most popular routing choice. As many people

would use navigation software, finding the recommended routes between those discov-

ered types of functional areas now proves to be important.

When talking about routing algorithms on a road network, we would instantly con-

sider the map information being represented as a directional graph with weight on the

edges. The edges would be the road segments connecting nodes. Our new problem of

finding the most popular route between two locations now is being translated into the

problem of finding the shortest path in a large graph between two vertices. To be more

accurate, it should be the cheapest cost path because we do not just want the route that is

short in mere distance, we would like to take road type and so on into consideration. So

a weighted shortest path problem should best describe this, and the weight is affected by

road type, for example the elevated roads or highway that have a better speed and pri-

ority should cost less weight than the secondary and ordinary roads with crossings and

traffic lights making them more favorable. Also, one-way is also an important decid-

ing factor in routing algorithms because it would simply disable or prohibit such edges

being reached in certain direction. In our database there is always a tag with the way

elements, showing the road hierarchy and one-way flag.

We consider a directed graphG = (V,E)with n nodes andm = (n) edges. An edge

33



Traffic Prediction for Urban Planning

(u, v) has the non-negative edge weightw(u, v). A shortest-path query between a source

node s and a target node t asks for the minimal weight d(s, t) of any path from s to t.

In static routing, the edge weights do not change so that it makes sense to perform some

pre-computations, store their results, and use this information to accelerate the queries.

Obviously, there is trade-off between query time, pre-processing time, and space for pre-

processed information. In particular, for large road networks it would be prohibitive to

pre-compute and store shortest paths between all pairs of nodes.

Dijkstra’s Algorithm Dijkstra (1959) is the classical algorithm for route planning

—maintains an array of tentative distances D[u]≥d(s, u) for each node. The algorithm

visits (or settles) the nodes of the road network in the order of their distance to the source

node and maintains the invariant thatD[u] = d(s, u) for visited nodes. We call the rank

of node u in this order its Dijkstra rank rks(u). When a node u is visited, its outgoing

edges (u, v) are relaxed, i.e., D[v] is set to min(D[v], d(s, u) + w(u, v)). Dijkstra’s

algorithm terminates when the target node is visited. The size of the search space is

O(n) and n/2(nodes) on the average. We will assess the quality of route planning

algorithms by looking at their speedup compared to Dijkstra’s algorithm, i.e., howmany

times faster they can compute shortest-path distances.

The algorithm that we use in our routing purpose is A* Search algorithm Hart et

al. (1968), also known as Geometric Goal Directed Search. The intuition behind goal

directed search is that shortest paths ‘should’lead in the general direction of the target.

A* search achieves this by modifying the weight of edge (u, v) to w(u, v)−(u) + (v)

where (v) is a lower bound on d(v, t). Note that this manipulation shortens edges that

lead towards the target. Since the added and subtracted vertex potentials(v) cancel along

any path, this modification of edge weights preserves the shortest paths. Moreover, as

long as all edge weights remain non-negative, Dijkstra’s algorithm can still be used. The

classical way to use A* for route planning in road maps estimates d(v, t) based on the

Euclidean distance between v and t and the average speed of the fastest road anywhere

in the network. Since this is a very conservative estimation, the speedup for finding the

quickest routes is rather small. Lastly there is heuristic that evolved during recent years.

In the last decades, commercial navigation systems were developed which had to han-

34



Traffic Prediction for Urban Planning

dle ever more detailed descriptions of road networks on rather low-powered processors.

Vendors resolved to heuristics still used today that do not give any performance guar-

antees: use A� search with estimates on d(u, t) rather than lower bounds; do not look

at ‘unimportant’streets, unless you are close to the source or target. The latter heuris-

tic needs careful hand tuning of road classifications to produce reasonable results but

yields considerable speedups. Refer to the Listing 3.1 for a pseudocode of A* searching

algorithm.

1 // OPEN list consists on nodes that have been visited but not

expanded (meaning that sucessors have not been explored yet). This

is the list of pending tasks.

2 // CLOSE list consists on nodes that have been visited and expanded (

sucessors have been explored already and included in the open list

, if this was the case).

3 initialize the open list

4 initialize the closed list

5 put the starting node on the open list (you can leave its f at zero)

6

7 while the open list is not empty

8 find the node with the least f on the open list, call it "q"

9 pop q off the open list

10 generate q's 8 successors and set their parents to q

11 for each successor

12 if successor is the goal, stop the search

13 successor.g = q.g + distance between successor and q

14 successor.h = distance from goal to successor

15 successor.f = successor.g + successor.h

16

17 if a node with the same position as successor is in the OPEN list

which has a lower f than successor

18 then skip this successor

19 if a node with the same position as successor is in the CLOSED

list which has a lower f than successor

20 then skip this successor

21 otherwise

22 add the node to the open list

35



Traffic Prediction for Urban Planning

23 end

24 push q on the closed list

25 end

Listing 3.1 A* searching algorithm in pseudocode

In the engineering process, we implementedA* algorithm to read theOpenStreetMap

data format, along with two coordinates representing the starting point and ending point

of the routing. We used the tags about the road that the ways in the database have to

create a customized weight for different type of roads. We are routing each location in

the clustered functional areas to those other locations in another type of functional areas.

So we have 3 groups of routing being done: the routes between locations in residential

areas and business sites areas, the routes between locations in residential areas and shop-

ping mall areas, and the routes between locations in business sites areas and shopping

mall areas. An example routing after running our program is plotted in Figure 3.8, note

that the map plots all valid roads of the bounded area in Shanghai, and the red polylines

which take a large majority is the roads that has not been searched. Those in blue are

the roads that the A* algorithms runs through and calculated. The green one is the final

optimal route found. We have all the node ID and way ID information so that we can

identify easily.

In order to make the routing information we have all done into our feature list of

each nodes, or road segments, we designed three features for each node to represent the

hot or popular ways, which are the numbers of occurrences for this node to be in the all

routes between those 3 clusters of functional areas. To be clear, there are the number of

the best routes between residential areas and business site areas that passes just through

this particular node, and the number between residential areas and shopping mall areas

as well as the number between business sites area and shopping mall areas. In this way,

we can have each node having the features that represent the level of popularity of itself

as being chosen by people when thinking of driving from on cluster to another.

36



Traffic Prediction for Urban Planning

Figure 3.8 An example graphical output of the optimal routing program from
one place to another

37



Traffic Prediction for Urban Planning

3.5 Non-Geospatial Implicit Features

Besides the features related to location information and the geographical properties

around them that we discussed about in the previous sections, in this section we are

talking about those features that are not related directly to geo-spatial information yet

we still considered important because we think that those features will somehow provide

an implicit and indirect link of the causing factors of drivers’behavior, popularity and

rank in the city and road network properties. We proposed 8 features in this category:

the time of the day (in hours), whether it is weekday or weekend, the apartment rental

price in the nearby area for those with 1, 2 and 3 bedrooms respectively, the tempera-

ture in the day and night, and the weather condition of the time (either sunny, cloudy,

shower or rainy, etc.). It is quite straightforward for us to come up with these features,

they can have linkage with the traffic situation. For example, the rental price of the

nearby apartment reflects the popularity, population and land price of the area, which

shall further imply the degree of importance and centrality in urban area. There are

really some expensive residential areas in Shanghai like near the center of the city in

Huangpu District, where the population is really high. The population density is a cru-

cial matter that affects traffic. If the rental price is high, it means that there lives a high

density of people, and as a result, the traffic vehicles that travels from and to this place

will be massive, resulting in heavy traffic. So we think it is a significant feature that

represents the population density of the area, the distribution over area data of which is

hard for us to obtain.

Other features like the time of the day and the difference between weekdays and

weekends are also self-explanatory: people have different goals andmotivation of where

they would like to drive to on weekdays and weekends, which will affect road network

loads and as a result causing traffic problems. In rush hour of weekdays, the roads’ con-

nection where most people live and where the workplaces being located at are getting

large flow of traffic. On weekends however, roads connecting the residential functional

areas and shopping mall areas during the dinning time and the closing hour of the shop-

ping mall will also become under heavy congestion. Other features like weather and

38



Traffic Prediction for Urban Planning

temperature of the area are also straightforward and guaranteed to have positive effects

on prediction results. When the weather is rainy and bad, by all our consensus, people

tend to drive more than walking and taking public transit because of the bad weather

makes people reluctant to spend time outside and rather to stay inside the cars. Also the

speed of vehicle under bad weathers are lower than normal, contributing to the conges-

tion. Extremely low and high temperatures will also cause the people drive more often

because there is air conditioning inside and without the hassle and of walking outside.

3.6 Summary of Collected Features

After discussing all the three categories of features being extracted or referenced, we

come to a summary of all the features we use in the next chapter, training and testing

with the machine learning model. See Table 3.3 for reference on the feature list, with a

total number of 311. Note that the weather condition feature is represented as a binary

representation of 1-in-N representation, see Section 4.3.2 for details. Some of those

features are input by user as prior knowledge during the prediction step. Though with

different source and magnitude, either explicitly or implicitly representing the causing

factors, they, being put together, comprise a large set of knowledge engineered by either

we researchers as well as the computer algorithms, and that is one of the most important

step and effort in application machine learning in real world scenarios.

Table 3.3 Feature list used in model training, testing and prediction

Number Feature Name Description

1 price_1 The average one-bedroom apartment

rental price nearby.

2 price_2 The average two-bedroom apartment

rental price nearby.

3 price_3 The average three-bedroom apartment

rental price nearby.

4 haveShop Boolean flag of whether there exists a

shopping place nearby.

39



Traffic Prediction for Urban Planning

5 - 17 roadType The type of the current road in tags from

OSM database, choices mapped as 1-of-

N representation. The road types include:

primary, pedestrian, secondary,

path, demolished, construction,

tertiary, service, track, trunk,

residential, link, unclassified.

18 HouseHouseNum The number of optimal routes between

residential areas themselves going

through this segment.

19 WorkWorkNum The number of optimal routes between

business site areas themselves going

through this segment.

20 MallMallNum The number of optimal routes between

shopping mall areas themselves going

through this segment.

21 HouseWorkNum The number of optimal routes from resi-

dential areas to business site areas going

through this segment.

22 HouseMallNum The number of optimal routes from resi-

dential areas to shopping mall areas going

through this segment.

23 WorkHouseNum The number of optimal routes from busi-

ness site areas to residential areas going

through this segment.

24 WorkMallNum The number of optimal routes from busi-

ness site areas to shopping mall areas go-

ing through this segment.

40



Traffic Prediction for Urban Planning

25 MallHouseNum The number of optimal routes from shop-

ping mall areas to residential areas going

through this segment.

26 MallWorkNum The number of optimal routes from shop-

ping mall areas to business site areas go-

ing through this segment.

27 time The time of the day in hours.

28 temp Temperature at the current data instance’s

time slot.

29 isweekend Boolean flag of whether the day is in

weekend.

30 - 66 currentNodeLeftX The number of POIs of each type around

the crossing to the left of the current node.

67 - 103 currentNodeRightX The number of POIs of each type around

the crossing to the right of the current

node.

104 - 140 forwardOneCrossingX The number of POIs of each type around

the first next crossing forward to the cur-

rent node.

141 - 167 forwardTwoCrossingX The number of POIs of each type around

the second next crossing forward to the

current node.

168 - 214 forwardThreeCrossingX The number of POIs of each type around

the third next crossing forward to the cur-

rent node.

215 - 251 backwardOneCrossingX The number of POIs of each type around

the first next crossing backward to the cur-

rent node.

41



Traffic Prediction for Urban Planning

252 - 288 backwardTwoCrossingX The number of POIs of each type around

the second next crossing backward to the

current node.

289 - 325 backwardThreeCrossingX The number of POIs of each type around

the third next crossing backward to the

current node.

324 forwardCrossAvgDist The average distance between road cross-

ings forward to the current node.

325 backwardCrossAvgDist The average distance between road cross-

ings backward to the current node.

326 - 342 weather The weather condition in the area,

choices mapped as 1-of-N represen-

tation. The condition string includes:

"clear", "cloudy", "flurries",

"fog", "hazy", "mostlycloudy",

"mostlysunny", "partlycloudy",

"partlysunny", "sleet", "rain",

"snow", "sunny", "tstorms",

"unknown".

42



Traffic Prediction for Urban Planning

Chapter 4 Model and Test Result

4.1 Overview of Model Selection

The input of our model, if we abstract the real world problem into a mathematical model,

is that we have all of our map and geographical data encoded inside the map, as well as

other data sources for cross referencing and better describing the properties that matters.

There is also a time variable and other temporal data that plays an important role. The

output we desired from the model is the traffic situation, labeled in green, yellow, red

and deep red, at the desired period of time at the location within given boundary.

From the description of our problem, it is clearly seen as a classification problem

in machine learning. When the data are being used to predict a category, supervised

learning is also called classification. This is the case when assigning a node or road

segment with the predicted label of a 4 category traffic situation. When there are only

two choices, this is called two-class or binomial classification. When there are more

categories, this problem is known as multi-class classification, which is what we are

tackling now, more precisely a 4-class classification problem.

There are quite a number of classification algorithms available, including Naïve

Bayes, Logistic Regression, Decision Trees and Support VectorMachines (SVMs). There

are also lots of combinations of those algorithms into ensemble method that also outper-

forms a single classifier. We try to select the best suitable model for our traffic prediction

problem. Considerations when choosing an algorithm mainly includes:

• Accuracy. Getting the most accurate answer possible isn’t always necessary.

Sometimes an approximation is adequate, depending on what you want to use

it for. If that’s the case, you may be able to cut your processing time dramati-

cally by sticking with more approximate methods. Another advantage of more

approximate methods is that they naturally tend to avoid overfitting.

• Training time. The number of minutes or hours necessary to train a model varies

43



Traffic Prediction for Urban Planning

a great deal between algorithms. Training time is often closely tied to accuracy

—one typically accompanies the other. In addition, some algorithms are more

sensitive to the number of data points than others. When time is limited it can

drive the choice of algorithm, especially when the data set is large.

• Linearity. Lots of machine learning algorithms make use of linearity. Linear

classification algorithms assume that classes can be separated by a straight line

(or its higher-dimensional analog). These include logistic regression and support

vector machines. Linear regression algorithms assume that data trends follow a

straight line. These assumptions aren’t bad for some problems, but on others they

bring accuracy down. Despite their dangers, linear algorithms are very popular as

a first line of attack. They tend to be algorithmically simple and fast to train.

• Number of parameters. Parameters are the knobs a user gets to turn when setting

up an algorithm. They are numbers that affect the algorithm’s behavior, such as

error tolerance or number of iterations, or options between variants of how the al-

gorithm behaves. The training time and accuracy of the algorithm can sometimes

be quite sensitive to getting just the right settings. Typically, algorithms with large

numbers parameters require the most trial and error to find a good combination.

Alternatively, there is a parameter sweeping way that automatically tries all pa-

rameter combinations at whatever granularity you choose. While this is a great

way to make sure you’ve spanned the parameter space, the time required to train a

model increases exponentially with the number of parameters. The upside is that

having many parameters typically indicates that an algorithm has greater flexi-

bility. It can often achieve very good accuracy. Provided you can find the right

combination of parameter settings.

• Number of features. For certain types of data, the number of features can be

very large compared to the number of data points. This is often the case with

genetics or textual data. The large number of features can bog down some learning

algorithms, making training time unfeasibly long. Support Vector Machines are

particularly well suited to this case, and in our problem there are more than 300

44



Traffic Prediction for Urban Planning

features.

In the process that we deal with finding out the best model suitable for our data and

the problem, which is mainly test, cross-validation or hold-out process, we used a way

to find out which model and which set of features works the best. In summary the whole

process is typically a cycle: design a set of features, run an experiment and analyze the

results on a validation data set, calculate the score, change the feature set or the machine

learning model and start over.

Finally, after doing experiments with the famous ensemble method AdaBoost and

linear classifier SVM. AdaBoost Freund and Schapire (1997), a popular boosting algo-

rithm, core principle of which is to fit a sequence of weak learners (i.e., models that

are only slightly better than random guessing, such as small decision trees) on repeat-

edly modified versions of the data. The predictions from all of them are then combined

through aweightedmajority vote (or sum) to produce the final prediction. The datamod-

ifications at each so-called boosting iteration consist of applying weights w1, w2, ..., wN

to each of the training samples. Initially, those weights are all set to wi = 1/N , so

that the first step simply trains a weak learner on the original data. For each successive

iteration, the sample weights are individually modified and the learning algorithm is

reapplied to the reweighted data. At a given step, those training examples that were in-

correctly predicted by the boosted model induced at the previous step have their weights

increased, whereas the weights are decreased for those that were predicted correctly. As

iterations proceed, examples that are difficult to predict receive ever-increasing influ-

ence. Each subsequent weak learner is thereby forced to concentrate on the examples

that are missed by the previous ones in the sequence Hastie et al. (2005).

The results from the comparison experiment show that AdaBoost does not outper-

form SVM in this problem. So we choose to use the family of SVM classifiers because

of its fast speed and relatively good accuracy in the context of linear as well as its ex-

tensive resources and popularity.

45



Traffic Prediction for Urban Planning

4.2 Support Vector Machines (SVMs)

Support vector machines (SVMs) Cortes andVapnik (1995) are a set of supervised learn-

ing methods used for classification, regression and outliers detection. The advantages

of support vector machines are:

• Effective in high dimensional spaces.

• Still effective in cases where number of dimensions is greater than the number of

samples.

• Uses a subset of training points in the decision function (called support vectors),

so it is also memory efficient.

• Versatile: different Kernel functions can be specified for the decision function.

Common kernels are provided, but it is also possible to specify custom kernels.

A support vector machine constructs a hyper-plane or set of hyper-planes in a high or

infinite dimensional space, which can be used for classification, regression or other

tasks. Intuitively, a good separation is achieved by the hyper-plane that has the largest

distance to the nearest training data points of any class (so-called functional margin),

since in general the larger the margin the lower the generalization error of the classifier.

Given training vectors xi ∈ Rp, i = 1, ..., n, in two classes, and a vector y ∈ {1,−1}n,

SVC solves the following primal problem:

min
w,b,ζ

1

2
wTw + C

n∑
i=1

ζi (4-1)

subject to yi(wTϕ(xi) + b) ≥ 1− ζi, (4-2)

ζi ≥ 0, i = 1, ..., n (4-3)

46



Traffic Prediction for Urban Planning

Its dual is

min
α

1

2
αTQα− eTα (4-4)

subject to yTα = 0 (4-5)

0 ≤ αi ≤ C, i = 1, ..., n (4-6)

where e is the vector of all ones, C > 0 is the upper bound, Q is an n by n positive

semidefinite matrix,Qij ≡ yiyjK(xi, xj)whereK(xi, xj) = ϕ(xi)
Tϕ(xj) is the kernel.

Here training vectors are implicitly mapped into a higher (maybe infinite) dimensional

space by the function ϕ.

The decision function is:

sgn(
n∑

i=1

yiαiK(xi, x) + ρ) (4-7)

SVC, NuSVC and LinearSVC are variants of SVMs capable of performing multi-class

classification on a dataset. SVC and NuSVC implement the “one-against-one”approach

Knerr et al. (1990) for multi-class classification. If n_class is the number of classes,

then n_class∗ (n_class−1)/2 classifiers are constructed and each one trains data from

two classes. On the other hand, Linear SVC implements “one-vs-the-rest”multi-class

strategy, thus training n_class models. If there are only two classes, only one model is

trained. In our problem, we choose to use linear SVC as a multi-class classifier. The

kernel function can be any of the following:

• linear: ⟨x, x′⟩

• polynomial: (γ⟨x, x′⟩+ r)d

• rbf: exp(−γ|x− x′|2)

• sigmoid (tanh(γ⟨x, x′⟩+ r))

47



Traffic Prediction for Urban Planning

4.3 Training Models

4.3.1 LIBSVM and LIBLINEAR

Until now, we already have all the data collected and processed into features using the

feature extraction program that we introduced in the previous chapter. We followed

certain schema of data and types and finally we should prepare all the extracted features

into a data format that could be required and recognized by LIBSVM and LIBLINEAR

programs. They are open source software and very robust in real world performance.

These implementations of support vector machine algorithm is widely used and tested,

so we choose to use them in our own project.

LIBSVM Chang and Lin (2011) is an integrated software for support vector clas-

sification, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-SVR) and distribution es-

timation (one-class SVM). It supports multi-class classification. Since version 2.8, it

implements an SMO-type algorithm Fan et al. (2005). LIBSVM provides a simple inter-

face where users can easily link it with their own programs. Main features of LIBSVM

include: different SVM formulations, efficient multi-class classification, cross valida-

tion for model selection, probability estimates, various kernels (including precomputed

kernel matrix), weighted SVM for unbalanced data, etc.

LIBLINEAR Fan et al. (2008) is a linear classifier for data with millions of instances

and features. It supports the following classifiers:

• L2-regularized classifiers

• L2-regularized classifiers

• L2-loss linear SVM, L1-loss linear SVM, and logistic regression (LR)

• L1-regularized classifiers

• L2-loss linear SVM and logistic regression (LR)

• L2-regularized support vector regression

• L2-loss linear SVR and L1-loss linear SVR.

48



Traffic Prediction for Urban Planning

A good advantage of LIBLINEAR is that it uses the same data format as LIBSVM, the

general-purpose SVM solver introduced above, and also similar usage. Multi-class clas-

sification is done by either 1) one-vs-the rest or 2) Crammer & Singer. In our problem,

we use the one-vs-the-rest for multi-class classification.

The difference between the two libraries are quite obvious too. The main idea is

that LIBLINEAR is optimized to deal with linear classification (i.e. no kernels neces-

sary), whereas linear classification is only one of the many capabilities of LIBSVM, so

logically it may not match up to LIBLINEAR in terms of classification accuracy. Also,

when there are some large data for which with/without nonlinear mappings gives similar

performances. Without using kernels, one can quickly train a much larger set via a lin-

ear classifier. In such suitable cases, the cross-validation time is significantly reduced

by using LIBLINEAR. Our traffic prediction problem also uses the LIBLINEAR as a

model training tool and a prediction tool because we have large amount of data and the

high performance, especially the real-time data prediction ability is crucial in our online

application.

4.3.2 Processing Extracted Features

Categorical Feature

SVM requires that each data instance is represented as a vector of real numbers. Hence,

if there are categorical attributes, we first have to convert them into numeric data. We

recommend using m numbers to represent an m-category attribute. Only one of the

m numbers is one, and others are zero. For example, in our case, we have a feature

representing weather conditions. Since all the weather conditions are described as words

and no real-numbered value is meaningful, or can be compared with each other in terms

of values while representing such categorical feature. So it is a typical problem that

could be seen as a 15-category attribute, with all the possible weather conditions in our

weather data. It is therefore represented as (0,0,...,0,1), (0,0,...,1,0), (0,...,1,0,0) and so

on. This is the so-called one-in-N representation of features, with each field having a

binary value. Our experience indicates that if the number of values in an attribute is not

49



Traffic Prediction for Urban Planning

too large, this coding might be more stable than using a single number.

Scaling

Scaling before applying SVM is very important. Part 2 of Sarle et al. (1997) explains

the importance of this and most of the considerations also apply to SVM. The main

advantage of scaling is to avoid attributes in greater numeric ranges dominating those

in smaller numeric ranges. Another advantage is to avoid numerical difficulties during

the calculation. Because kernel values usually depend on the inner products of feature

vectors, e.g. the linear kernel and the polynomial kernel, large attribute values might

cause numerical problems. We recommend linearly scaling each attribute to the range

[−1, +1] or [0, 1]. Of course we have to use the same method to scale both training and

testing data. For example, suppose that we scaled the first attribute of training data from

[−10, +10] to [−1, +1]. If the first attribute of testing data lies in the range [−11, +8],

we must scale the testing data to [−1.1, +0.8]. The LIBSVM provides a helpful utility

to help scale and normalize the input feature data ranges, with the scaling parameter

outputs saved to a file which should be later read by the prediction program. This could

be done by the following command, calculate and applying the same scaling parameters

in both generating scaled data in range [0, 1] for training and testing and it is important

for accuracy:

$ ../svm-scale -l 0 -s scaling_parameter train > train.scale

$ ../svm-scale -r scaling_parameter test > test.scale

4.3.3 Imbalanced Dataset

In our problem, one of the biggest caveats that emerges is the class imbalance issue.

Imbalanced data typically refers to a problem with classification problems where the

classes are not represented equally. In our case, there would be always more data repre-

senting the class of clear traffic (green) than other classes, often to a large ratio, because

traffic jam happens only from time to time. As a result, the model trained will prefer to

predict every instance of test data into the major representing class, because that would

50



Traffic Prediction for Urban Planning

achieve a high accuracy, which is not right if the model simply predict all the traffic

situation into “good”, which is a big part of the occurrences. They would cause many

problems, like we cannot use accuracy anymore to perform the optimal parameter search

of the model with accuracy as goal, because the imbalanced distribution would greatly

shift the result to one-class sided. The accuracy paradox is the case where your accuracy

measures tell the story that you have excellent accuracy (such as 90% in our case), but

the accuracy is only reflecting the underlying class distribution. It is very common, be-

cause classification accuracy is often the first measure we use when evaluating models

on our classification problems. To compare solutions, we will use alternative metrics

(True Positive, True Negative, False Positive, False Negative) instead of general accu-

racy of counting number of mistakes. In order to solve this, there are several ways to

achieve the goal. We can roughly classify the approaches into two major categories:

sampling based approaches and cost function based approaches:

Sampling based approaches

This can be roughly classified into three categories:

• Oversampling, by adding more of the minority class so it has more effect on the

machine learning algorithm

• Undersampling, by removing some of the majority class so it has less effect on

the machine learning algorithm

• Hybrid, a mix of oversampling and undersampling

However, these approaches have clear drawbacks. By undersampling, we could risk

removing some of the majority class instances which is more representative, thus dis-

carding useful information. By oversampling, just duplicating theminority classes could

lead the classifier to overfitting to a few examples.

51



Traffic Prediction for Urban Planning

Table 4.1 Imbalanced distribution of training set, caused by the intrinsic anomaly
nature of traffic situations, resolved by assigning a weight to each class based on
number of representations

Class #Occurrence Percentage Weight
Green (Good) 2197252 0.90953 1
Yellow (Slow) 176517 0.07306 14
Red (Congested) 40629 0.01681 59

Deep Red (Extremely Congested) 1105 0.00046 2186

Cost function based approaches

The intuition behind cost function based approaches is that if we think one false negative

is worse than one false positive, we will count that one false negative as, e.g., 100 false

negatives instead. For example, if 1 false negative is as costly as 100 false positives,

then the machine learning algorithm will try to make fewer false negatives compared

to false positives (since it is cheaper). In case of SVM, different classes can have dif-

ferent weights on them, resulting in the desired loss penalty Osuna et al. (1997). For

imbalanced data sets we typically change the mis-classification penalty per class. This

is called class-weighted SVM, which minimizes the following:

min
w,b,ξ

N∑
i=1

N∑
j=1

αiαjyiyjκ(xi, xj) + Cpos

∑
i∈P

ξi + Cneg

∑
i∈N

ξi, (4-8)

s.t. yi
( N∑

j=1

αjyjκ(xi, xj) + b
)
≥ 1− ξi, i = 1 . . . N (4-9)

ξi ≥ 0, i = 1 . . . N (4-10)

where P and N represent the positive/negative training instances. In standard SVM

we only have a single P value, whereas now we have 2. The misclassification penalty

for the minority class is chosen to be larger than that of the majority class. Essentially

this is equivalent to oversampling the minority class: for instance if Cpos = 2Cneg this

is entirely equivalent to training a standard SVM with C = Cneg after including every

positive twice in the training set. See Table 4.1 for the weight put on each class based

on occurrences of small classes.

52



Traffic Prediction for Urban Planning

SMOTE

In 2002, a sampling based algorithm called SMOTE (SyntheticMinority Over-Sampling

Technique) Chawla et al. (2002) was introduced that try to address the class imbalance

problem. It is one of the most adopted approaches due to its simplicity and effectiveness.

It is a combination of oversampling and undersampling, but the oversampling approach

is not by replicating minority class but constructing new minority class data instance via

an algorithm.The intuition behind the construction algorithm is that oversampling causes

overfit because of repeated instances causes the decision boundary to tighten. Instead,

we will create “similar”examples instead. To the machine learning algorithm, these new

constructed instances are not exact copies and thus softens the decision boundary as a

result. As a result, the classifier is more general and does not overfit.

4.3.4 Training Process

Our prepared training set consists of data collected from 19 May to 25 May, a time

period of 7 days with weekdays and weekends. So as a test purpose training data, it is

well covered the situations and our extracted features, even though the data number is

still relatively small, not being able to make the model robust enough. Also the data set

is too imbalanced due to the very nature of the problem, we could only begin to solve this

after collecting much more data so that the minor classes could have their amount and

representatives without being overwhelmed. Each line of the data file for LIBLINEAR

is a line representing a data instance. A data instance of a classification problem is often

represented in the following form.

label feature 1, feature 2, . . ., feature n

After scaling is done, we split and sampled the dataset into training set and test set for

later validation. The split is done by selecting the data lines that are previous in the time

as training data, and use those with a more recent time as test data. By construction data

set this way, we could test out how good the training data from the historical time points

would perform in predicting traffic situation at a future time. Alternatively, we could

53



Traffic Prediction for Urban Planning

split the data so that the data in one district of Shanghai are used as training set and those

in another district are used as test set. By splitting data this way, we could evaluate how

good it will perform to predict traffic situation with new geospatial information using

the old ones from another place. Or we could just randomly sample the dataset to create

a training set and a test set. Considering the data imbalance issues, that is, the labels’

distribution is not balanced, because there would always be more roads in green state

than in deep red state, causing the score computations and accuracy invalid. So we have

to sample a balanced number of data instances that is equivalent to the data lines with

the least number of label occurrence.

After training data and testing data are created, it is the time to feed the organized and

scaled training data into the train program to train a model. There are a few parameters

that we could tune for the LIBLINEAR, the most important of which is the type of solver

to use, switched by the parameter -s. The following are all the available solvers for

multi-class classification, which includes both Logistic Regression and SVM:

0 -- L2-regularized logistic regression (primal)

1 -- L2-regularized L2-loss support vector classification (dual)

2 -- L2-regularized L2-loss support vector classification (primal)

3 -- L2-regularized L1-loss support vector classification (dual)

4 -- support vector classification by Crammer and Singer

5 -- L1-regularized L2-loss support vector classification

6 -- L1-regularized logistic regression

7 -- L2-regularized logistic regression (dual)

Formulations for the above available classification solvers:

For L2-regularized logistic regression (-s 0), we solve

minww
Tw/2 + C

∑
log(1 + exp(−yiwTxi)) (4-11)

54



Traffic Prediction for Urban Planning

For L2-regularized L2-loss SVC dual (-s 1), we solve

minα0.5(α
T (Q+ I/2/C)α)− eTα (4-12)

s.t. 0 <= αi, (4-13)

For L2-regularized L2-loss SVC (-s 2), we solve

minww
Tw/2 + C

∑
max(0, 1− yiw

Txi)
2 (4-14)

For L2-regularized L1-loss SVC dual (-s 3), we solve

minα0.5(α
TQα)− eTα (4-15)

s.t. 0 <= αi <= C, (4-16)

For L1-regularized L2-loss SVC (-s 5), we solve

minw

∑
|wj|+ C

∑
max(0, 1− yiw

Txi)
2 (4-17)

For L1-regularized logistic regression (-s 6), we solve

minw

∑
|wj|+ C

∑
log(1 + exp(−yiwTxi)) (4-18)

For L2-regularized logistic regression (-s 7), we solve

minα0.5(α
TQα) +

∑
αi ∗ log(αi) +

∑
(C − αi) ∗ log(C − αi)− constant

(4-19)

s.t. 0 <= αi <= C, (4-20)

where Q is a matrix with Qij = yiyjx
T
i xj. (4-21)

The LIBLINEAR implements 1-vs-the rest multi-class strategy for classification, which

our problem used. In training i vs. non_i, their C parameters are weight from −wi ∗C

55



Traffic Prediction for Urban Planning

and C, respectively.

After several experiments with different solvers, we selected the L2-regularized L2-

loss support vector classification (primal) as the solver. Primal-based solvers (Newton-

type methods) are moderately fast in most situations compared to the dual-based solvers

(coordinate descent methods). In contrast, it is sometimes suggested to use the dual-

based solvers when dealing with large sparse data (e.g., documents) under suitable scal-

ing and C is not too large, or data with number of instances much less than the number

of features. In our traffic prediction problem, it is clear that it does not belong to these

two situations.

4.4 Testing Result and Evaluation

After training the training set using LIBLINEAR, we obtained the model which could

be used to test the scores on the test set, by comparing the predicted labels with the

correct labels. We are able to easily predict a test set by using the predict program,

also provided by LIBLINEAR. Note that the test data set are also being scaled with the

same scaling parameter as the training set, that is, the test data is on the same data scale

and range with the testing data on each feature. The test data set is collected from 28

May to 1 June, so that compared to the training set, the test set is the future time data,

which could correctly and scientifically measure and test our model’s performance. In

our case, the values’ ranges between features vary largely due to the different type and

aspect of the feature extraction and data source, and such scaling will help with the

accuracy.

As stated in the previous section, our problem is mainly dealing with telling rare

classes that happens from one very large class. Classification and evaluation such imbal-

anced classes are real challenges, because accuracy no longer representing the model’s

correctness effectively, thus the optimization of parameter in common algorithms are

not reliable anymore using accuracy as metric.

In order to assess themodel trained, wewould introduce three scoring and evaluation

methods use: Precision, Recall and F1 metrics.

Precision-Recall metric are usually used to evaluate classifier output quality. In in-

56



Traffic Prediction for Urban Planning

formation retrieval, precision is a measure of result relevancy, while recall is a measure

of how many truly relevant results are returned. A high area under the curve represents

both high recall and high precision, where high precision relates to a low false positive

rate, and high recall relates to a low false negative rate. High scores for both show that

the classifier is returning accurate results (high precision), and returning a majority of

all positive results (high recall).

A system with high recall but low precision returns many results, but most of its

predicted labels are incorrect when compared to the training labels. A system with high

precision but low recall is just the opposite, returning very few results, but most of its

predicted labels are correct when compared to the training labels. An ideal system with

high precision and high recall will return many results, with all results labeled correctly.

Precision (P ) is defined as the number of true positives (Tp) over the number of true

positives plus the number of false positives (Fp).

P =
Tp

Tp + Fp

(4-22)

Recall (R) is defined as the number of true positives (Tp) over the number of true posi-

tives plus the number of false negatives (Fn).

R =
Tp

Tp + Fn

(4-23)

These quantities are also related to the (F1) score, which is defined as the harmonic

mean of precision and recall.

F1 = 2
P ×R

P +R
(4-24)

It is important to note that the precision may not decrease with recall. The definition

of precision ( Tp

Tp+Fp
) shows that lowering the threshold of a classifier may increase the

denominator, by increasing the number of results returned. If the threshold was previ-

ously set too high, the new results may all be true positives, which will increase preci-

sion. If the previous threshold was about right or too low, further lowering the threshold

57



Traffic Prediction for Urban Planning

Table 4.2 Precision, recall and F1 scores of the test result

Class Precision Recall F1 Score Support
Green (Good) 0.93 0.93 0.93 716106
Yellow (Slow) 0.24 0.10 0.14 53039
Red (Congested) 0.07 0.14 0.09 9400
Deep Red (Extremely Congested) 0.00 0.24 0.01 215
Avg / Total 0.87 0.87 0.87 778760

will introduce false positives, decreasing precision. Recall is defined as Tp

Tp+Fn
, where

Tp + Fn does not depend on the classifier threshold. This means that lowering the clas-

sifier threshold may increase recall, by increasing the number of true positive results.

It is also possible that lowering the threshold may leave recall unchanged, while the

precision fluctuates.

See Table 4.2 for the scores of three different performance metrics the test result

with popular way features representing the non-local geospatial features introduced in

Section 3.4, and also with correct and identical data set scaling. From the scores of result

data, we can see how big the impact of data imbalance issue can be. As seen in the table,

the overall scores for predicting traffic that is good, which is the most popular class, is

really out performing those for other minor classes, which is as high as 0.93. The scoring

metrics are taking the distribution into consideration, and we can see that our system

predict poorly for heavy traffic situations, especially the red and deep red ones. It is

seen here that while doing cross-validation can help optimize our model, the imbalance

issue would also break the evaluation. For imbalanced data sets, accuracy may not be a

good criterion for evaluating a model. It may be better to conduct cross-validation and

prediction with respect to different criteria (F-score, AUC, etc.). We achieved this model

by feature engineering worked by trying and testing with our without the set of feature,

and compare various metrics, not limited to just accuracy, to make feature selection and

achieve near optimal model. The tables also show that normalization and regularization

of data set is crucial for linear SVC, which is sensitive to varying ranges. Besides,

getting the scaling parameter right and consistent are crucial in such an application with

large varying feature value ranges.

We also collected and sampled some data points at certain time points from Baidu

58



Traffic Prediction for Urban Planning

Map’s traffic prediction functionality. We sampled the prediction at a historical time

point, and check whether the prediction is correct or not at the same location when the

future time come. We wish to set up a baseline for our application to compare against.

Though the problem abstraction between ours and Baidu Map’s are a little different,

since we mainly consider the affects of the geospatial surroundings on traffic, while

Baidu Map uses more likely temporal historical data at the location to make prediction,

it can still shed some light on us for our future progressions. We then tested our model by

predicting the test data collected several days after when the training set is collected, and

in the mean time, we compared the prediction result and accuracy at the same district,

Huangpu, Shanghai. We reached an accuracy of 86.747% while Baidu Map has an

accuracy of 82.798%. In Table 4.3, we could see the prediction result evaluation of our

model compared to the traffic prediction data collected fromBaiduMap on day and hour

periods basis. The count of data instances are aggregated into time periods. Readersmay

note that the total number of data instances of Baidu Map traffic prediction is always

larger than ours, it is because that though both of them covered the whole Huangpu

District, the points sampled for our test data is a bit smaller than the points sampled

by Baidu Map, where the points were selected in a rectangular bounding box, which

consists of some marginal data outside Huangpu District.

Besides from the relatively close and good prediction rate during non-rush hours or

weekdays, we perform sometimes better at rush hours where traffic anomalies appears

more often. It is seen that most of the time our test result using mere linear SVC model

exceeds the Baidu Map’s traffic prediction result and accuracy based on time-series

historical data, which is a great evidence that feature engineering on both local and

non-local geospatial data indeed contribute to the model. It is also seen that at rush

hours on workdays, the prediction accuracy is significantly lowered due to the model

not performing so well while classifying extremely small classes, which is heavy traffic

jam. Also, one should also notice that there are some test time periods that our system

perform much worse than the Baidu Map traffic prediction, like the accuracy at 17 pm,

May 31 is as low as 65.327%, while the accuracy of Baidu Map at this time is 70.620%,

and like the accuracy at 20-23 pm, May 31 is also showing a large accuracy drop-down

59



Traffic Prediction for Urban Planning

as Baidu Map’s is 82.841% and ours is 70.925%. It is apparently anomalies in our

data set, since the trend of accuracy simply changed a lot at this time, compared with

the accuracy at the other days at the same time. We still need to investigate more on

this issue, and looking deep into the prediction data, we found that our model performs

really bad while having lots of traffic jams happening in the area which is generally low

in probability. We still need to collect more and more data, since currently we only used

7 days of traffic data, which is far from enough for the model to be performing well

against such anomalies when sudden outliers or events like holiday, extreme weather

or traffic accident happens. That means our current model is sensitive and not robust

enough.

60



Traffic Prediction for Urban Planning

Table 4.3 The prediction result evaluation of our model compared to the traffic
prediction data collected from Baidu Map, and all testing and comparison were
done within the area of Huangpu District, Shanghai, and test set divided and pre-
dicted on hourly basis.

Date Hour Baidu Map Traffic Prediction Our Test Result
#Correct #All Accuracy(%) #Correct #All Accuracy (%)

5.28
16-17 38465 52393 73.416 18366 24330 75.487
18 24730 34920 70.819 12688 16211 78.268

19-23 54783 69869 78.408 24336 32449 74.998

5.29

0-8 193174 208941 92.454 93692 97396 96.197
9-11 72256 87335 82.734 35445 40540 87.432
12-17 61488 87323 70.414 34914 40545 86.112
18-19 38158 52407 72.811 21820 24344 89.632
21-23 73472 87338 84.124 37061 40562 91.369

5.30

0-7 143761 156830 91.667 69386 73051 94.983
10-14 82890 104798 79.095 39897 48659 81.993
15-16 38132 52398 72.774 19986 24316 82.193
19 11831 17462 67.753 6958 8111 85.785

20-23 89219 104812 85.123 41987 48677 86.256

5.31

0-7 95963 104387 91.930 46137 48711 94.716
9 26245 34940 75.114 13422 16217 82.765

10-14 80915 104797 77.211 37976 48655 78.052
17 12333 17464 70.620 5300 8113 65.327

18-19 23927 34928 68.504 11710 16222 72.186
20-23 43418 52411 82.841 17259 24334 70.925

6.1
0-7 126991 139389 91.105 59625 64923 91.840
9 14564 17469 83.371 6919 8090 85.525

10-13 40160 52402 76.638 20665 24304 85.027
Overall 1386875 1675013 82.798 675549 778760 86.747

61



Traffic Prediction for Urban Planning

Chapter 5 Implementation

5.1 System Architecture

As a working system that is capable of handling user requests and make real time predic-

tions, an appropriate system architecture is required. Thanks to the open source project

OpenStreetMap, we can borrow most of its architecture since it is real world tested and

robust and rigid. First of all, the database we used are the same as the OpenStreetMap

server map database, which is PostgreSQL. The reason for selecting this database soft-

ware for all of our crucial map data is because it is really one of the fastest and most

state-of-art database, most importantly with strong support of geospatial database ex-

tension, PostGIS. Such extension comes extremely handy with some functions in SQL

to help ease the pain of querying spatial data as well as spatial index for speedups. The

backend for providing map editing (with frontend application in JavaScript called iD),

showing slippymap, andmapAPI are from the OpenStreetMap’s Rails Port project writ-

ing in Ruby on Rails language framework (https://github.com/openstreetmap/

openstreetmap-website). We simply run an instance of this backend at our own

server, and it uses our own database for data source. The OSM API is a REST web ser-

vice interface for reading and writing to the database i.e. XML over HTTP, with use of

simple URLs for object access, and standard HTTP response codes. Other OSM com-

ponents access the database via this interface. It is also available to the outside internet.

The API logic is all part of the same Ruby on Rails application which powers the OSM

front end website. Another part of our system are the map rendering engine that serves

on our server the latest map in form of tile map images, so that the fronted could have

beautiful cartography. The main backend for the rendering of the maps that are pro-

duced from OSM data in the PostGIS instance of the database is open source software

Mapnik (http://mapnik.org/). There are several great open source utilities provided

by OpenStreetMap that is really useful for converting and processing the downloaded

data from data dump sites and used in scheduled jobs to exporting and importing up-

62

https://github.com/openstreetmap/openstreetmap-website
https://github.com/openstreetmap/openstreetmap-website
http://mapnik.org/


Traffic Prediction for Urban Planning

Figure 5.1 OpenStreetMaps software stack and components

dated data fromAPI database to the PostGIS database used byMapnik for tile rendering，

which include Osmosis, an OSM data processing Swiss army knife, and OSM data im-

porter for rendering or geo-coding, osm2pgsql, a powertool for importing OSM XML

files into PostGIS databases. Finally, there is our own written prediction engine which

provides the prediction API for real-time requests for predicting traffic behaviors with

provided parameters and previously trainedmachine learningmodel. It is written in Java

as a servlet application running inside Tomcat container. A demo web frontend page is

also online, using the popular Leaflet.js library (http://leafletjs.com/) which is

our main demo showcase. The server where we are running all these system compo-

nents is powered by Ubuntu 12.04.5 LTS, with Intel Xeon(R) CPU E5504 CPU and 48

GB of memory.

63

http://leafletjs.com/


Traffic Prediction for Urban Planning

5.2 Map Database

The map database is one of the most important part in our system because it stores all the

information we previously obtained. The map database is also called the main database

since obviously it is where we keep all our data. The main database is accessed for

editing via the API, so the editing is also made in this database. The database contains

tables for each element type (nodes, ways, relations). In fact, for each of these there are

several database tables: current, history, current_tags, history_tags. In addition, there

are database tables for storing changeset, gpx_files, users, diary entries, sessions, oauth

etc. The database contains several tables and relations that is shown it the figure. The

database we used is PostgreSQL, with strong geospatial capabilities. PostgreSQL has

geometry types. For our core OSM database we do not use these. We have own rep-

resentation of OpenStreetMap data primitives. The PostGIS extension for PostgreSQL

is often used for geographic data. PostGIS adds geospatial functions and two metadata

tables. Again we do not use this for our core database, however we do use all of these

things on the tile server database as required by the Mapnik rendering engine. Osmo-

sis can be used to populate a more general PostgreSQL/PostGIS database from a OSM

data dump file, where we initially populated and loaded the Baidu POIs. We also added

some other geographic related functions and data types to our instance of database, such

as proximity querying, etc. A changeset, as you can see in both database schemas and

OSM XML files, consists of a group of changes made by a single user over a short

period of time, for example someone edited the map in a session of urban planning pro-

cess. One changeset may for example include the additions of new elements to OSM,

the addition of new tags to existing elements, changes to tag values of elements, dele-

tion of tags and also deletion of elements. The ER-diagram is shown in Figure 5.2, 5.3

and 5.4, the most important tables are current_nodes/nodes, current_ways/ways, cur-

rent_node_tags/node_tags as well as current_way_nodes/way_nodes. Those are the ta-

ble we used most frequently because they hold our map data primarily. Those columns

named k and v are just representing the tags in the form of key-value pairs. Several of

indexes and foreign key on columns on tables exist, refer to the DDL statement for more

64



Traffic Prediction for Urban Planning

Figure 5.2 Main database ER-diagram part 1

details.

5.3 Tile Rendering

The process of rendering a map generally means taking raw geospatial data and making

a visual map from it. Often the word applies more specifically to the production of a

raster image, or a set of raster tiles, but it can refer to the production of map outputs in

vector-based formats. “3D rendering” is also possible taking map data as an input. The

ability to render maps in new and interesting styles, or highlighting features of special

interest, is one of the most exciting aspects having open access to geo-data. Developers

in and around theOpenStreetMap community have created awide variety of software for

rendering OpenStreetMap data. The data can also be converted to other data formats for

use with existing rendering software. The rendering engine we used to provide those

beautiful tile maps is called Mapnik. Mapnik is an open source toolkit for rendering

65



Traffic Prediction for Urban Planning

Figure 5.3 Main database ER-diagram part 2

Figure 5.4 Main database ER-diagram part 3

66



Traffic Prediction for Urban Planning

Figure 5.5 An example rendering using Mapnik with OpenStreetMap carto style

maps. Among other things, it is used to render the five main Slippy Map layers on the

OpenStreetMap website. It supports a variety of geospatial data formats and provides

flexible styling options for designing many different kinds of maps. Mapnik is written in

C++ and can be scripted using binding languages such as JavaScript (Node.js), Python,

Ruby, and Java. It uses the AGG rendering library and offers anti-aliasing rendering

with subpixel accuracy. Mapnik can use data from different sources: it can directly pro-

cess OSM data, PostGIS databases, shapefiles and more. In our system design, PostGIS

database is used, with data updated from the main database we introduced earlier. Post-

GIS is the most common approach for rendering OSM data with Mapnik. OSM can be

loaded by a tool such as osm2pgsql or Imposm and accessed via SQL queries and GIS

functions defined in a Mapnik style. This approach can be used for more advanced ren-

derings, and is the main datasource used by the Standard OpenStreetMap layer. Mapnik

allows for customization of all the cartographic aspect of a map - data features, icons,

fonts, colors, patterns, and even certain effects such as pseudo-3d buildings and drop

shadows. This is all controlled by defining datasources and style rules, most commonly

in an XML language specific to Mapnik. The style we used is the same as the Open-

StreetMap standard one, which is open source and beautiful (written in CartoCSS sup-

ported by Mapnik, https://github.com/gravitystorm/openstreetmap-carto).

The Figure 5.5 shows the style used.

67

https://github.com/gravitystorm/openstreetmap-carto


Traffic Prediction for Urban Planning

5.4 Prediction Engine

This is the most important part in the whole project and is very crucial and special. It is

a servlet program written in Java, as a Servlet and running in the very popular Tomcat

Servlet container. The prediction engine listens at a HTTP port and accept requests with

given parameter. It is running with URL pattern /prediction and with query parameters

x1, x2, y1, y2 representing the bounding box longitude and latitude of the prediction

area, as well as the hour representing the hour of the day ranging from 0 to 24, and price

representing the average house rental price of the requested area, along with day_temp

and night_temp, representing the temperature of day and night. After some calculations

and processing, the prediction engine responds with a large JSON format data, con-

taining list of 5-tuples, each with the form of (starting coordinates, ending coordinates,

predicted traffic situation). Every two consecutive nodes in one way will form such

a tuple representing a road segment, the smallest unit of prediction. In cases of one-

way road, only one tuple exists for one such segment, and in cases of two-way road,

two tuples exist for one such segment, with starting coordinates and ending coordinates

exchanged, and with new predicted traffic situation.

During this process, the programmainly does a few things in steps to be clear. Firstly,

the Servlet program called prediction.java receive the request and parse the parameter

described above, getting the bounding box and some other designated parameters for

prediction. Then the program access the main map database introduced above, querying

the current_nodes, current_ways and current_way_nodes table with the condition that

only nodes andwayswithin the bounding box get selected. After successfully getting the

query result, the map data is stored in an object with all the connections and relations

as Map data structure in Java. A method named organizeWays is called to organize

queried ways and nodes into the right sequence and become connected. Then begins

the data preprocessing to achieve the input data in required format for LIBSVM. First

generate the crossings of the roads and calculate all the features related to crossings

by the class named genCross and calCross. We calculate the crossings several blocks

ahead and behind, following the same rule that was used in previous training and testing

68



Traffic Prediction for Urban Planning

experiments, storing data in feature result list. After that, the program begins to search

and count the number of points of interests of all types predefined and derived from

Baidu types. As stated in data collection chapter, all the POIs have been imported into

the main database’s current_nodes/nodes table with specific tag poitype=*, so with the

help of the strong and robust spatial functionality that PostgreSQL database provides,

we can use SQL queries to easily search all the points within a given radius of the given

coordinates. It is achieved by Cube and EarthDistance, and these 2 extensions provide

easy to use and very fast methods to accomplish some more minor geo related activities.

Before doing anything, we prepared the database with two lines of SQL to create such

extensions:

1 CREATE EXTENSION cube;

2 CREATE EXTENSION earthdistance;

Listing 5.1 Create required extension in PostgreSQL

Query and get a set of all POI types that exist in our database:

1 SELECT * FROM current_node_tags WHERE current_node_tags.k='poitype';

Listing 5.2 Query all POI types

And then, at the beginning of each request, we create a temporary table called poi_nodes

out of only POI nodes that have necessary tags inside, so that the search later would be

in a much smaller range of data.

1 CREATE TEMPORARY TABLE poi_nodes ON COMMIT PRESERVE ROWS AS SELECT *

FROM current_nodes WHERE current_nodes.id IN (SELECT

current_node_tags.node_id FROM current_node_tags;

Listing 5.3 Create temporary table poi_nodes

And we created a spatial index using GiST on latitudes and longitudes of each node

for it on the fly. GiST stands for Generalized Search Tree. It is a balanced, tree-

structured access method, that acts as a base template in which to implement arbitrary

indexing schemes. B-trees, R-trees and many other indexing schemes can be imple-

mented in GiST. The advantage of GiST is that it allows the development of custom

69



Traffic Prediction for Urban Planning

data types with the appropriate access methods, by an expert in the domain of the data

type, rather than a database expert. So we can be sure that what we are querying is all

about longitude and latitude. Though making this index in context of the whole Shang-

hai area would take more than one or two seconds, it is worth the trade off because

after my experiment, with index each radius search query would take nearly 2 seconds

to complete the sequential search and heavy calculating each row. After the indexing,

each query takes about 20ms to complete, which is a great improvement. Note that the

longitude and latitude in the database are being multiplied by 1e7 as an integer, so here

we shall divide it back to normal double.

1 CREATE INDEX on poi_nodes USING gist(ll_to_earth(poi_nodes.latitude *

1.0 / 1e7, poi_nodes.longitude * 1.0 / 1e7));

Listing 5.4 Create index on table poi_nodes

Then comes the interesting part. Because we have a lot of nodes from all ways in

the area, the search is quite extensive. Each node that belongs to a way has a feature

with the counting of how many points of interest of given type are there in vicinity of

the node, and add those numbers to the feature list of every node. This is where the

previously created extension comes useful. The two of the many functions we use here

is calculating the distance between coordinates and finding records in a radius. To cal-

culate the distance between 2 coordinates we use earthdistance(lltoearth($latlngcube),

lltoearth($latlng_cube)). This function allows us to pass 2 sets of coordinates and it will

return a numerical value representing meters. Another great function provided by these

extensions is earth_box(ll_to_earth($lat, $lng), $radius_in_metres). This function al-

lows us to perform a simple compare to find all records in a certain radius. This is done

by the function by returning the great circle distance between the points. The following

is the actual query that run for each node and each type to be counted. The searching

radius is 200 meters in our case.

1 SELECT * FROM poi_nodes WHERE earth_box(ll_to_earth(lat, lon), radius

) @> ll_to_earth(poi_nodes.latitude * 1.0 / 1e7, poi_nodes.

longitude * 1.0 / 1e7);

Listing 5.5 Query the POIs in range

70



Traffic Prediction for Urban Planning

After iterating through all the nodes to query the points of interest around each given

node. We managed to get those POI related features calculated and stored in format for

later use.

The next step in the whole prediction process is to prepare those calculated and

queried features into prediction test data in order. It iterates through all the ways that

previously visited in order, and look up relevant nodes within each way, extracting all

the related items and features. For the first iteration process, it deals with the forward

direction and in the second it deals with the backward direction. During the process,

each feature line is written into a text file in the original order preserved so that later on

the prediction process could output readable results. It is basically a file with many lines

as the whole test data set, each line contains node ID and all the features used. Here is

the end of the feature extraction process.

When the next step of the real prediction starts, firstly the data set scale procedure

provided from the LIBSVM library is invoked, with the same scaling parameters as the

ones used in the training data set and model so that the consistency of data normalization

could be achieved. After scaling all the testing data’s feature value right, the predict

program from the open source LIBLINEAR is called for high speed prediction of the

test data with given SVM model file. It takes the normalized data input for best result

and the output is redirected to a text file. This process is actually relatively fast due to

the high performance. It cost less time than the most time consuming data processing

and feature extraction steps.

As for the last step of returning and responding the predicted traffic situation of all

roads back to the client, the prediction Servlet needs to read the test result and read the

result in the same order as before when it is written. Because of this, it is trivial to save

those predicted results along with the nodes’ information and the consecutive nodes’seg-

ments for later drawing in the frontend. Now we simply attach the starting coordinates

and the ending coordinates together with the predicted traffic on this segment, and the

one-way and two-way situations are treated separately. The case of the two-way roads

actually becomes really tricky because we need the frontend to draw distinguishable

lines of possibly different color (the traffic situation on each direction of the roads may

71



Traffic Prediction for Urban Planning

vary largely due to many issues). The lines could not just have their starting coordinate

and ending coordinate exchanged, because that would result in an exactly overlapped

two lines in the same place with different color, causing the user not being able to dis-

tinguish. To solve this, we have to make a little bit of the offset to the second instance

of the road segment representing the opposite direction. That is, when coming across

the backward direction, we calculate the starting and ending coordinates using the linear

parallel offset formula as we consider the longitude/latitude coordinates is equivalent to

Descartes Coordinates in such a small area on earth. We neglected the fact that the earth’

s surface is a sphere. By offsetting 1 to 2 meters distance to the original segment vector,

the result is already distinguishable between two directions.

However, regardless of those variants, the final result is a JSON file containing a list

object containing a list of all the 5-tuples to be drawn. The response is then sent back

the requesting client for later process. This is all the process that our prediction engine

would do, it is still quite slow when adding all this together and one of our future work

is to improve the response time.

5.5 Frontend Showcase

Each application needs a good and useful interface to function properly. In our frontend

page, it is made up of only one HTML file, along with several open source JavaScript

libraries. The appearance is not fancy nor extensive for users, but it shows some of our

system’s most import usage, which is predicting under the condition of current data and

time and weather. The editing interface has a separate page and link, currently not cus-

tomized and we simply use the iD online OSM map editor provided by OpenStreetMap

and included in the Rails Port project which we have been running on our own server and

introduced earlier. The demo page of the prediction we wrote is based on a very pop-

ular open source online mapping library called Leaflet.js (http://leafletjs.com/)

which could be able to handle our own customized tile server and draw the prediction

results in each color as polylines on the tile map layer. Leaflet is the leading open-

source JavaScript library for mobile-friendly interactive maps. Weighing just about 33

KB of JS, it has all the mapping features most developers ever need. Leaflet is designed

72

http://leafletjs.com/


Traffic Prediction for Urban Planning

Figure 5.6 Frontend demo page

with simplicity, performance and usability in mind. It works efficiently across all ma-

jor desktop and mobile platforms, can be extended with lots of plugins, has a beautiful,

easy to use and well-documented API and a simple, readable source code that is a joy to

contribute to, and that is why we choose to use it because it is really strong and small in

size. On the page there are several input boxes and dropdown selections that allows the

user to input the scalar parameters that needs to be provided by the user. Below the input

form is where the Leaflet library comes into use. There is a slippy map interface that

allows the user to freely zoom in and zoom out as well as pan around to browse the map.

The tile image layer is defined while creating the class with our own Mapnik rendering

server. After the user put the desired area into the screen size, he or she would click on

the predict button with all the parameter input. The frontend code would retrieve the

longitude and latitude of the bounding box that the map currently shows, checking the

zoom to see if it is too big an area that would cause potential crash. Then, along with

all the input data after checking validity, all those parameters are retrieved from the

frontend page and the page would send a AJAX HTTP request to the prediction engine’

s listening URL. This will initiate a prediction process and while waiting for response,

73



Traffic Prediction for Urban Planning

Figure 5.7 Frontend demo prediction result page

the frontend web page shows up a notification popup modal indicating that it is currently

running. After the data is received and all the road segments, three new multi-polyline

layers are initialized and pushed all lines with different prediction results represented

in different colors defined earlier into the layer’s lists respectively. The lines contained

the longitude and latitude starting and end point data, inserted into the layer with the

right color by switching on the predicted result. Then the layers loaded with data are

attached to the map object, so that the result could be shown on the web page in correct

colors. A quick note is that all the traffic prediction results is drawn on the client side in

browser by JavaScript. It turns vector data format into the images, so the performance

requirement is actually quite heavy, so limiting the rendering area is necessary. This

explains the whole process that the frontend does, basically only calling the backend

prediction engine to get the test result and draw the result on top of the map by using

the Leaflet.js library’s tile layers and vector layers’functionality. See Figure 5.6 for user

interface and Figure 5.7 for a small area prediction test.

74



Traffic Prediction for Urban Planning

Chapter 6 Conclusion

To conclude, this project contains not only the data mining and machine learning algo-

rithms used to extract the features, train the model and predict the traffic situation with

given input features, but also includes the server interface and web application that one

can edit, browse and calculate the prediction result as an extra layer on map.

For the algorithm and model part, we show at last that our feature and model as well

as the system is capable of predicting future traffic at a relatively good accuracy with

road network, points of interest and other spatial data, along with temporal and other re-

lated non-spatial data as input. We also made a comparison against Baidu Map’s traffic

prediction accuracy, at the same area and same time period, with the data points sam-

pled, collected and divided into hourly basis and into time slots. We exceeded Baidu

Map most of the time in terms of accuracy. Besides from the relatively close prediction

during non-rush hours or weekdays, we perform much better at rush hours where traffic

anomalies appears more often. We use class-weighted SVM for training to compensate

for the extreme data imbalance issues. Our special point and the advantage over other

similar traffic prediction researches or production is that we can accept a variable map as

an input, that is we take more consideration into the properties that lies in the geograph-

ical spatial data maps, rather than predicting by merely using historical traffic data and

time-series models which is prevalent in this field. We tested by changing and selecting

features and confirmed on the positive effect that how both local geographical features

like POI or road density and non-local features like population distribution, traveling

behavior and routing preferences, etc. affects the traffic flow in urban areas.

As for the platform we developed, the demo is already fully functional at the time,

available at http://adapt.seiee.sjtu.edu.cn:8080/traffic/ and users can browse

the map in Shanghai, making edits or doing prediction with input parameters and current

bounding box, then the prediction result would show up as a map overlay with colors

representing traffic on the road. Our system which consists of a lot of services that com-

municates and process with each other is fully set up, and we designed the system to be

75

http://adapt.seiee.sjtu.edu.cn:8080/traffic/


Traffic Prediction for Urban Planning

robust and decoupled enough so that if we later manage to improve or model, the inter-

changeable model file can be replaced and the system will instantly show a better result.

Meanwhile, our crawlers to get history data as well as testing and training data from

various sources are still up and running, continuing the data collection and training.

We still have some plans of future work, though. Our prediction scores is really

bad for minor classes like the anomalies like congested traffic situations, due to the in-

trinsic nature of extreme imbalance. So first of all is continuing working on the data

set and class representation imbalance issue to greatly increase our performance while

dealing with heavy traffic hours. There are promising methods like synthetic data re-

sampling, SMOTE, as described in earlier Section 4.3.3 as well as using techniques used

in anomaly detection such as one-class SVM and decision trees, since some traffic sit-

uations are very much like anomalies. We shall investigate more on the data collection

quality as well as feature engineering to train a better model with higher accuracy. We

will find more data sources relevant to the traffic issues that may become useful because

cross-referencing is important. Time-series methods likeMarkov process or moving av-

erage methods are also worth a try. Dig deeper into the human mobility and migration

behaviors, especially in urban environments, by implementing simulation process in an

abstracted network or graph with traffic being described as flow, is also a promising way

to improve. Currently our demo’s prediction speed is not fast enough for conveying a

good user experience. Besides from the interface updates, we plan to optimize the pre-

diction speed by implementing offline feature extraction which is the most costly part,

as well as speed up the algorithm by using distributed computing platform and database.

Online machine learning algorithms and models are preferred because while we contin-

uously crawl the data, we would like to make the model better and take feedback into

account from newly-become historical data.

76



Traffic Prediction for Urban Planning

REFERENCE

[1] Çඈඅൺ඄ S, Lංආൺ A, Gඈඇඓගඅൾඓ M C. Understanding congested travel in urban
areas.[J]. Nature communications, 2016, 7:10793. http://www.nature.com/
ncomms/2016/160315/ncomms10793/full/ncomms10793.html.

[2] Sංආංඇං F, Gඈඇඓගඅൾඓ M C, Mൺඋංඍൺඇ A, et al. A universal model for mobility and
migration patterns[J]. Nature, 2012, 484(7392):96–100. https://arxiv.org/
ftp/arxiv/papers/1111/1111.0586.pdf.

[3] Sർඁඇංඍඓඅൾඋ F, Lංൾൻං඀ T, Mൺඇඇඈඋ S, et al. Combining a gauss-markov model and
gaussian process for traffic prediction in dublin city center[J]. CEUR Workshop
Proceedings, 2014, 1133(2):373–374.

[4] Qං Y, Iඌඁൺ඄ S. A Hidden Markov Model for short term prediction of traffic con-
ditions on freeways[J]. Transportation Research Part C: Emerging Technologies,
2014, 43:95–111. http://dx.doi.org/10.1016/j.trc.2014.02.007.

[5] Rൾඇ Y, Eඋർඌൾඒ-Rൺඏൺඌඓ M, Wൺඇ඀ P, et al. Predicting commuter flows in spatial
networks using a radiation model based on temporal ranges.[J]. Nature communi-
cations, 2014, 5:5347. http://www.ncbi.nlm.nih.gov/pubmed/25373437.

[6] Xඎ J, Dൾඇ඀ D, Dൾආංඋඒඎඋൾ඄ U, et al. Context-aware online spatiotemporal traf-
fic prediction[J]. IEEE International Conference on Data Mining Workshops,
ICDMW, 2015, 2015-Janua(January):43–46.

[7] Xඎ J, Dൾඇ඀ D, Dൾආංඋඒඎඋൾ඄ U, et al. Mining the Situation: Spatiotemporal Traffic
Predictionwith BigData[J]. IEEE Journal on Selected Topics in Signal Processing,
2015, 9(4):702–715.

[8] Pൺඇ B, Dൾආංඋඒඎඋൾ඄ U, Sඁൺඁൺൻං C. Utilizing real-world transportation data for
accurate traffic prediction[J]. Proceedings - IEEE International Conference on
Data Mining, ICDM, 2012:595–604.

[9] Mർඁඎ඀ඁ D. Traffic Prediction and Analysis using a Big Data and Visualisation
Approach[J]. 2015.

[10] Xඎ Y, Kඈඇ඀ Q J, Kඅൾඍඍൾ R, et al. Accurate and interpretable bayesian MARS for
traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Sys-
tems, 2014, 15(6):2457–2469.

77

http://www.nature.com/ncomms/2016/160315/ncomms10793/full/ncomms10793.html
http://www.nature.com/ncomms/2016/160315/ncomms10793/full/ncomms10793.html
https://arxiv.org/ftp/arxiv/papers/1111/1111.0586.pdf
https://arxiv.org/ftp/arxiv/papers/1111/1111.0586.pdf
http://dx.doi.org/10.1016/j.trc.2014.02.007
http://www.ncbi.nlm.nih.gov/pubmed/25373437


Traffic Prediction for Urban Planning

[11] Hඈඋඏංඍඓ E J, Aඉൺർංൻඅൾ J, Sൺඋංඇ R, et al. Prediction, Expectation, and Surprise:
Methods, Designs, and Study of a Deployed Traffic Forecasting Service[J]. Con-
ference onUncertainty inArtificial Intelligence, 2012:1–10. http://arxiv.org/
abs/1207.1352.

[12] Cඈൺඌඍ S. OpenStreetMap[M].[S.l.]: [s.n.] , 2004. http://www.openstreetmap.
com.

[13] Fඋൾඒ B J, Dඎൾർ඄ D. Clustering by Passing Messages Between Data Points[J].
Science, 2007, 315:972–976. www.psi.toronto.edu/affinitypropagation.

[14] Pൾൽඋൾ඀ඈඌൺ F, Vൺඋඈඊඎൺඎඑ G, Gඋൺආൿඈඋඍ A, et al. Scikit-learn: Machine learning
in Python[J]. The Journal of Machine Learning Research, 2011, 12:2825–2830.

[15] Dංඃ඄ඌඍඋൺ EW. A note on two problems in connexion with graphs[J]. Numerische
mathematik, 1959, 1(1):269–271.

[16] Hൺඋඍ P E, Nංඅඌඌඈඇ N J, Rൺඉඁൺൾඅ B. A Formal Basis for the Heuristic Determi-
nation of Minimum Cost Paths[J]. IEEE Transactions on Systems Science and
Cybernetics, 1968, 4(2):100–107.

[17] Fඋൾඎඇൽ Y, Sർඁൺඉංඋൾ R E. A decision-theoretic generalization of on-line learning
and an application to boosting[J]. Journal of computer and system sciences, 1997,
55(1):119–139.

[18] Hൺඌඍංൾ T, Tංൻඌඁංඋൺඇං R, Fඋංൾൽආൺඇ J, et al. The elements of statistical learning:
data mining, inference and prediction[J]. The Mathematical Intelligencer, 2005,
27(2):83–85.

[19] Cඈඋඍൾඌ C, Vൺඉඇං඄ V. Support-vector networks[J]. Machine learning, 1995,
20(3):273–297.

[20] Kඇൾඋඋ S, Pൾඋඌඈඇඇൺඓ L, Dඋൾඒൿඎඌ G. Single-layer learning revisited: a stepwise
procedure for building and training a neural network[M]//Neurocomputing.[S.l.]:
Springer, 1990:41–50.

[21] Cඁൺඇ඀ C C, Lංඇ C J. LIBSVM: a library for support vector machines[J]. ACM
Transactions on Intelligent Systems and Technology (TIST), 2011, 2(3):27.

[22] Fൺඇ R E, Cඁൾඇ P H, Lංඇ C J. Working set selection using second order informa-
tion for training support vector machines[J]. The Journal of Machine Learning
Research, 2005, 6:1889–1918.

78

http://arxiv.org/abs/1207.1352
http://arxiv.org/abs/1207.1352
http://www.openstreetmap.com
http://www.openstreetmap.com
www.psi.toronto.edu/affinitypropagation


Traffic Prediction for Urban Planning

[23] Fൺඇ R E, Cඁൺඇ඀ K W, Hඌංൾඁ C J, et al. LIBLINEAR: A library for large linear
classification[J]. The Journal of Machine Learning Research, 2008, 9:1871–1874.

[24] Sൺඋඅൾ W S, et al. Neural network FAQ[J]. Periodic posting to the Usenet news-
group comp. ai. neural-nets, 1997.

[25] Oඌඎඇൺ E, Fඋൾඎඇൽ R, Gංඋඈඌං F. Support vector machines: Training and applica-
tions[J]. 1997.

[26] Cඁൺඐඅൺ N V, Bඈඐඒൾඋ K W, Hൺඅඅ L O, et al. SMOTE: synthetic minority over-
sampling technique[J]. Journal of artificial intelligence research, 2002:321–357.

79



Traffic Prediction for Urban Planning

Acknowledgments

I would like to express my deepest gratitude to my advisor Prof. Kenny Zhu, who has

always been there to listen and give practical advice. His patience, enthusiasm, great

kindness and immense knowledge helped me in all the time of research. Whenever I

encountered difficulties and become frustrated, Prof. Zhu would be always willing to

contribute his valuable feedback, advice and encouragement, illuminating the way for

me to continue to search for the answers. I could not have asked for a better advisor.

In addition to the academic collaboration, I greatly value Prof. Zhu’s guidance on the

personal integrity and the rigorous attitude toward research. Without his consistent in-

structions, this thesis could not be in this shape.

I am also thankful to ADAPT Lab for providing wonderful academic facilities and

atmosphere. In particular, many thanks to my friends Qi Lu, Jianan Wang, Yifei Huang

in ADAPT Lab for numerous discussions on related topics and collaborations. It’s my

pleasure to work with you during these years.

My gratitude would go to my beloved family as well as my girlfriend, Tingting

He, for their consistent encouragement and loving considerations during these years,

wherein I gained great confidence in developing a good research work.

80


	Introduction
	Motivation and Goal
	Related Work
	About OpenStreetMap
	Thesis Organization

	Data Collection
	Raw Map Data – from OSM
	Traffic Data – from Baidu Map
	Points of Interest – from Baidu Map

	Feature Extraction
	Overview of the Machine Learning
	Introduction to Feature Engineering
	Local Geospatial Features
	Clustering and Routing – Non-Local Geospatial Features
	Obtaining Data for Clustering
	Clustering the Data Collected
	Routing between Functional Areas

	Non-Geospatial Implicit Features
	Summary of Collected Features

	Model and Test Result
	Overview of Model Selection
	Support Vector Machines (SVMs)
	Training Models
	LIBSVM and LIBLINEAR
	Processing Extracted Features
	Imbalanced Dataset
	Training Process

	Testing Result and Evaluation

	Implementation
	System Architecture
	Map Database
	Tile Rendering
	Prediction Engine
	Frontend Showcase

	Conclusion
	References

