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INDIRECT SUPERVISION IN INFORMATION
EXTRACTION

ABSTRACT

In this thesis we explore various research problems in information extraction of NLP with
a special focus on using indirect supervision to leverage the abundant unlabeled data and
exploit internal semantic information without relying on heavy annotations. Recent advances in
neural networks (NNs) make it possible to build reliable models without handcrafted features.
However, in many cases, it is hard to obtain sufficient annotations to train these models. In this
study, starting with the named entity recognition (NER) task, we develop a neural framework
to extract knowledge from raw texts and empower the sequence labeling task. Besides word-
level knowledge contained in pre-trained word embeddings, character-aware neural language
models are incorporated to extract character-level knowledge. Transfer learning techniques are
further adopted to mediate different components and guide the language model towards the key
knowledge. Comparing to previous methods, these task-specific knowledge allows us to adopt a
more concise model and conduct more efficient training. Different from most transfer learning
methods, the proposed framework does not rely on any additional supervision. It extracts
knowledge from self-contained order information of training sequences. Extensive experiments
on benchmark datasets demonstrate the effectiveness of leveraging character-level knowledge
and the efficiency of co-training. On the CoONLLO03 NER task, model training completes in about
6 hours on a single GPU, reaching F1 score of 91.71+0.10 without using any extra annotations.
Besides NER for general domain text, we present our multi-channel neural architecture for
recognizing emerging named entity in social media messages. We propose a novel approach,
which incorporates comprehensive word representations with multi-channel information and
Conditional Random Fields (CRF) into a traditional Bidirectional Long Short-Term Memory
(BiLSTM) neural network without using any additional hand-crafted features such as gazetteers.
In comparison with other systems participating in the shared task, our system won the 2nd place

in terms of the average of two evaluation metrics.

With state-of-the-art models to extract named entities, we investigate that relation extraction

—iii —
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(RE) for types of interest is of great importance for interpreting massive text corpora in an
efficient manner. Traditional RE models have heavily relied on human-annotated corpus for
training, which can be costly in generating labeled data and become obstacles when dealing with
more types. Thus, more recent relation extraction systems have shifted to be built upon training
data automatically acquired by linking to knowledge bases (distant supervision). However,
due to the incompleteness of knowledge bases and the context-agnostic labeling, the training
data collected via distant supervision (DS) can be very noisy. In recent years, as the increasing
attention has been brought to tackling question-answering (QA) tasks, user feedbacks or datasets
of such tasks become more accessible. We propose a novel framework to leverage question-
answer pairs as an indirect source of supervision for relation extraction, and study how to use
such supervision to reduce noise induced from DS. Our model jointly embeds relation mentions,
types, QA entity mention pairs and text features in two low-dimensional spaces (RE and QA),
where objects with same relation types or semantically similar question-answer pairs have close
representations. Shared features connect these two spaces, carrying clearer semantic knowledge
from both sources. We then use these learned embeddings to estimate the types of test relation
mentions. We formulate a global objective function and adopt a novel margin-based QA loss
to reduce noise in DS by exploiting semantic evidence from the QA dataset. Our experimental
results achieve the average 11% improvement in F1 score on two public RE datasets combined
with TREC QA dataset.

Besides the traditional task of extracting relations between named entities, we also extend
the problem to general objects and the relations between them. Specifically, LocatedNear
relation is a kind of commonsense knowledge describing two physical objects that are typically
found near each other in real life. We study how to automatically extract such relationship
through a sentence-level relation classifier and aggregating the scores of entity pairs from a
large corpus. Also, we release two benchmark datasets for evaluation and future research. As a
new extension in information extraction, cross-cultural differences and similarities are common
in cross-lingual natural language understanding, especially for research in social media. For
instance, people of distinct cultures often hold different opinions on a single named entity. Also,
understanding slang terms across languages requires knowledge of cross-cultural similarities.
We study the problem of computing such cross-cultural differences and similarities. We present
a lightweight yet effective approach, and evaluate it on two novel tasks: 1) mining cross-cultural

differences of named entities and 2) finding similar terms for slang across languages.

To free information extraction tasks from closed domain and target set, we study open

— v —
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information extraction systems to mine relation tuples from sentences, and do not confine to
a pre-defined schema for the relations of interests. However, current open IE systems focus
on modeling local context information in a sentence to extract relation tuples, while ignoring
the fact that global statistics in a large corpus can be collectively leveraged to identify high-
quality sentence-level extractions. We integrate local context signal and global structural signal
in a unified framework with distant supervision. The new system can be efficiently applied
to different domains as it uses facts from external knowledge bases as supervision; and can
effectively score sentence-level tuple extractions based on corpus-level statistics. Experiments
on two real-world corpora from different domains demonstrate the effectiveness and robustness

when compared to other open IE systems.

KEY WORDS: information extraction, indirect supervision, natural lan-
guage processing, text mining
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Chapter 1 Introduction

Massive text corpora are emerging worldwide in different domains and languages. The sheer
size of such unstructured data and the rapid growth of new data pose grand challenges on making
sense of these massive corpora. Information extraction (IE)!"! — extraction of relation tuples
in the form of (head entity, relation, tail entity) — is a key step towards automating knowledge
acquisition from text. In Fig. 7-1, for example, the relation tuple (Louvre-Lens, build, new
satellites) can be extracted from sentence S, to represent a piece of factual knowledge in text
with structured form. Relation tuples so extracted have a variety of downstream applications,
including serving as building blocks for knowledge base construction!?! and facilitating question

answering systems!® 4,

Named entity recognition (NER) is one of the first and most important steps in Information
Extraction pipelines. Generally, it is to identify mentions of entities (persons, locations, organi-
zations, etc.) within unstructured text. After identifying all the named entities in the large text

corpora, we could do tasks like relation extraction for named entities.

Relation extraction is an important task for understanding massive text corpora by turning
unstructured text data into relation triples for further analysis. For example, it detects the
relationship “president_of” between entities “Donald Trump” and “United States” in a
sentence. Such extracted information can be used for more downstream text analysis tasks
(e.g. serving as primitives for information extraction and knowledge base (KB) completion, and

assisting question answering systems).

However, most research focused on knowledge graphs for named entities and their rela-
tions, yet commonsense knowledge is lesser researched at the time. ConceptNet is one of the
few examples but its content is human-curated and limited. Commonsense knowledge is an
important ingredient in machine comprehension and inference. Artificial intelligence systems
can benefit from incorporating commonsense knowledge as background, such as ice is cold
(HasPROPERTY), chewing is a sub-event of eating (HASSUBEVENT), chair and table are typically
found near each other (LocatedNear), etc. These kinds of commonsense facts have been used
in many downstream tasks, such as textual entailment'™ ¢! and visual recognition tasks!”). The
commonsense knowledge is often represented as relation triples in commonsense knowledge

bases, such as ConceptNet'®!, one of the largest commonsense knowledge graphs available today.
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However, most commonsense knowledge bases are manually curated or crowd-sourced by com-
munity efforts and thus do not scale well. With reasoning capability and model interpretability
in mind, the commonsense knowledge question came to me. I then constructed dataset and
models to automatically extract, aggregate and populate commonsense spatial knowledge (the
most limited relation type in ConceptNet) from literature texts (novels usually have descriptions
of physical scenes). It may help other tasks (object detection) through knowledge reasoning and

logical rules.

Apart from these well-defined research problems in information extraction, we also shifted
our focus onto the intersection of natural language processing with computational social science.
We propose new task of cross-lingual, cross-cultural word embeddings and internet slang
translation from social media under different cultural backgrounds. Many current NLP systems
like machine translation or dialogue systems are not aware of the user’ s cultural background
and its implications. With the help of socio-linguistic features to model cultural differences, it

could potentially make downstream tasks socially and culturally aware.

However, one of the most important issue in current state of the art methods in these
information extraction task is the heavy reliance of human annotated training data or noise
and error prone. Typically, RE systems rely on training data, primarily acquired via human
annotation, to achieve satisfactory performance. However, such manual labeling process can
be costly and non-scalable when adapting to other domains (e.g. biomedical domain). In
addition, when the number of types of interest becomes large, the generation of handcrafted
training data can be error-prone. To alleviate such an exhaustive process, the recent trend has
deviated towards the adoption of distant supervision (DS). DS replaces the manual training
data generation with a pipeline that automatically links texts to a knowledge base (KB). The
pipeline has the following steps: (1) detect entity mentions in text; (2) map detected entity
mentions to entities in KB; (3) assign, to the candidate type set of each entity mention pair,
all KB relation types between their KB-mapped entities. However, the noise introduced to the
automatically generated training data is not negligible. There are two major causes of error:
incomplete KB and context-agnostic labeling process. If we treat unlinkable entity pairs as
the pool of negative examples, false negatives can be commonly encountered as a result of the
insufficiency of facts in KBs, where many true entity or relation mentions fail to be linked to
KBs (see example in Figure 4—1). In this way, models counting on extensive negative instances
may suffer from such misleading training data. On the other hand, context-agnostic labeling

can engender false positive examples, due to the inaccuracy of the DS assumption that if a

2
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sentence contains any two entities holding a relation in the KB, the sentence must be expressing
such relation between them. For example, entities “Donald Trump” and “United States” in the
sentence “Donald Trump flew back to United States” can be labeled as “president_of” as
well as “born_in”, although only an out-of-interest relation type “travel_to” is expressed
explicitly.

To alleviate such exhaustive process, two main lines of work have emerged: weak supervi-
sion and distant supervision (DS). Weak supervision relies on a small set of manually-specified
seed instances (or patterns) that are applied in bootstrapping learning to identify more instances
of each type. This assumes seeds are unambiguous and sufficiently frequent in the corpus,
which requires careful seed selection by human. The recent trend has deviated towards the
adoption of distance supervision (DS). DS generates training data automatically by aligning
texts and a knowledge base(KB). The typical workflow is : (1) detect entity mentions in text;
(2) map detected entity mentions to entities in KB; (3) assign, to the candidate type set of each
entity mention pair, all KB relation types between their KB-mapped entities. The automatically
labeled training corpus is then used to infer types of the remaining candidate entity mentions

and relation mentions (i.e., unlinkable candidate mentions).

Towards the goal of diminishing the negative effects by noisy DS training data, distantly
supervised RE models that deal with training noise, as well as methods that directly improve the
automatic training data generation process have been proposed. These methods mostly involve
designing distinct assumptions to remove redundant training information®'?!. For example,
method applied in!'* 'l assumes that for each relation triple in the KB, at least one sentence
might express the relation instead of all sentences. Moreover, these noise reduction systems
usually only address one type of error, either false positives or false negatives. Hence, current

methods handling DS noises still have the following challenges:

1. Lack of trustworthy sources: Current de-noising methods mainly focus on recognizing la-
beling mistakes from the labeled data itself, assisted by pre-defined assumptions or patterns.
They do not have external trustworthy sources as guidance to uncover incorrectly labeled
data, while not at the expense of excessive human efforts. Without other separate information
sources, the reliability of false label identification can be limited.

2. Incomplete noise handling: Although both false negative and false positive errors are observed

to be significant, most existing works only address one of them.

While traditional IE systems require people to pre-specify the set of relations of interests,

recent studies on open-domain information extraction (Open IE)!'3-11 rely on relation phrases

3
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extracted from text to represent the entity relationship, making it possible to adapt to various
domains (i.e., open-domain) and different languages (i.e., language-independent). Thus we also

try to extend the information extraction to open domain with minimum supervision.

In this thesis we explored various research problems in information extraction, with a focus
on utilizing indirect supervision by exploiting outside supplementary data or the data itself
inherent traits. We first start with tackling the named entity recognition problem, then relation
extraction problem. We extend to open domain information extraction and also propose novel

tasks related to extracting cultural differences in the social media domain.

In the second chapter, we proposed a sequence labeling framework, which effectively
leverages the language model to extract character-level knowledge from the self-contained order
information. Highway layers are incorporated to overcome the discordance issue of the naive
co-training Benefited from the effectively captured such task-specific knowledge, we can build
a much more concise model, thus yielding much better efficiency without loss of effectiveness
(achieved the state-of-the-art on three benchmark datasets) . In the third chapter, we present
a novel multi-channel BiLSTM-CRF model for emerging named entity recognition in social
media messages. We find that BILST-CRF architecture with our proposed comprehensive word
representations built from multiple information are effective to overcome the noisy and short
nature of social media messages. In the fourth chapter, we present a novel study on indirect
supervision (from question-answering datasets) for the task of relation extraction. We propose a
framework, REQUESsT, that embeds information from both training data automatically generated
by linking to knowledge bases and QA datasets, and captures richer semantic knowledge from
both sources via shared text features so that better feature embeddings can be learned to
infer relation type for test relation mentions despite the noisy training data. Our experiment
results on two datasets demonstrate the effectiveness and robustness of REQuEsT. In the
fifth chapter, we propose to identify LocatedNear relation from literature text and construct
a knowledge base of object pairs that would commonly appear near each other in real world.
We present a novel study on enriching LocatedNear relationship from textual corpora. Based
on our two newly-collected benchmark datasets, we propose several methods to solve the
sentence-level relation classification problem. We show that existing methods do not work
as well on this task and discovered that LSTM-based model does not have significant edge
over simpler feature-based model. Whereas, our multi-level sentence normalization turns out
to be useful. In the fifth chapter, we present the SocVec method to compute cross-cultural

differences and similarities, and evaluate it on two novel tasks about mining cross-cultural

4
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differences in named entities and computing cross-cultural similarities in slang terms. Through
extensive experiments, we demonstrate that the proposed lightweight yet effective method
outperforms a number of baselines, and can be useful in translation applications and cross-
cultural studies in computational social science. In the final chapter, we study the task of
open information extraction and proposes a principled framework, ReMine, to unify local
contextual information and global structural cohesiveness for effective extraction of relation
tuples. ReMine leverages distant supervision in conjunction with existing knowledge bases
to provide automatically-labeled sentence and guide the entity and relation segmentation. The
local objective is further learned together with a translating-based objective to enforce structural
cohesiveness, such that corpus-level statistics are incorporated for boosting high-quality tuples
extracted from individual sentences. We develop a joint optimization algorithm to efficiently
solve the proposed unified objective function and can output quality extractions by taking into
account both local and global information. Experiments on two real-world corpora of different
domains demonstrate that ReMine system achieves superior precision when outputting same
number of extractions, compared with several state-of-the-art open IE systems. As a byproduct,
ReMine also demonstrates competitive performance on detecting mentions of entities from text

when compared to several named entity recognition algorithms.
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Chapter 2 Named Entities Recognition with Language
Models

2.1 Introduction

Linguistic sequence labeling is a fundamental framework. It has been applied to a variety of tasks
including part-of-speech (POS) tagging, noun phrase chunking and named entity recognition
(NER)!'6- 171 These tasks play a vital role in natural language understanding and fulfill lots of
downstream applications, such as relation extraction, syntactic parsing, and entity linking!!3- 11,

Traditional methods employed machine learning models like Hidden Markov Models
(HMMs) and Conditional Random Fields (CRFs), and have achieved relatively high perfor-
mance. However, these methods have a heavy reliance on handcrafted features (e.g., whether
a word is capitalized) and language-specific resources (e.g., gazetteers). Therefore, it could be
difficult to apply them to new tasks or shift to new domains. To overcome this drawback, neural
networks (NNs) have been proposed to automatically extract features during model learning.
Nevertheless, considering the overwhelming number of parameters in NNs and the relatively
small size of most sequence labeling corpus, annotations alone may not be sufficient to train

complicated models. So, guiding the learning process with extra knowledge could be a wise

choice.

@ forward-to-SL highway - (Sbackward-to-SL highway ~ ~~~~""""""" B
@ forward-to-LM highway > backward-to-LM highway Ty v ; e . CRF for Sequence Labeling
D character-level Istm unit D T AT e e At
D word-level Istm unit

Q concat unit

D embedding r l'

highway

soft-max for
language model

highway

character-level
LSTMs

€2 €30 C3_ Cap €41 €4 C50  C51 G52 G5y Coa o

Figure 2—-1 LM-LSTM-CRF Neural Architecture
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Accordingly, transfer learning and multi-task learning have been proposed to incorporate
such knowledge. For example, NER can be improved by jointly conducting other related tasks

like entity linking or chunking!'® 2%,

After all, these approaches would require additional
supervision on related tasks, which might be hard to get, or not even existent for low-resource

languages or special domains.

Alternatively, abundant knowledge can be extracted from raw texts, and enhance a variety
of tasks. Word embedding techniques represent words in a continuous space!?"??! and retain
the semantic relations among words. Consequently, integrating these embeddings could be
beneficial to many tasks!'® 23, Nonetheless, most embedding methods take a word as a basic
unit, thus only obtaining word-level knowledge, while character awareness is also crucial and

highly valued in most state-of-the-art NN models.

Only recently, character-level knowledge has been leveraged and empirically verified to
be helpful in numerous sequence labeling tasks'?* ?°!. Directly adopting pre-trained language
models, character-level knowledge can be integrated as context embeddings and demonstrate
its potential to achieve the state-of-the-art®"!. However, the knowledge extracted through pre-
training is not task-specific, thus containing a large irrelevant portion. So, this approach would
require a bigger model, external corpus and longer training. For example, one of its language
models was trained on 32 GPUs for more than half a month, which is unrealistic in many

situations.

In this chapter, we propose an effective sequence labeling framework, LM-LSTM-CRF ,
which leverages both word-level and character-level knowledge in an efficient way. For character-
level knowledge, we incorporate a neural language model with the sequence labeling task and
conduct multi-task learning to guide the language model towards task-specific key knowledge.
Besides the potential of training a better model, this strategy also poses a new challenge.
Based on our experiments, when the tasks are discrepant, language models could be harmful to
sequence labeling in a naive co-training setting. For this reason, we employ highway networks!2¢!
to transform the output of character-level layers into different semantic spaces, thus mediating
and unifying these two tasks. For word-level knowledge, we choose to fine-tune pre-trained
word embeddings instead of co-training or pre-training the whole word-level layers, because the
majority of parameters in word-level layers come from the embedding layer and such co-training

or pre-training cost lots of time and resources.

We conduct experiments on the CoNLL 2003 NER task, the CoNLL 2000 chunking task,
as well as the WSJ portion of the Penn Treebank POS tagging task. LM-LSTM-CRF achieves

_ 8
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x | word-level input x; | i-th word

¢ | character-level input | ¢;; | j-th charin x;

¢, | space after x; co,_ | space before x;

label sequence y; | label of x;

f; | output of forward character-level LSTM at ¢;

r; | output of backward character-level LSTM at ¢;

fL; | output of forward-to-LM highway unit

r-; | output of backward-to-LM highway unit

N, | output of forward-to-SL highway unit

r'; | output of backward-to-SL highway unit

v; | input of word-level bi-LSTM at x;

z; | output of word-level bi-LSTM at x;

Table 2—1 Notation Table.

a significant improvement over the state-of-the-art. Also, our co-training strategy allows us to
capture more useful knowledge with a smaller network, thus yielding much better efficiency

without loss of effectiveness.

2.2 LM-LSTM-CRF Framework with Inherent Supervision

The neural architecture of our proposed framework, LM-LSTM-CREF , is visualized in Fig. 2—

1. For a sentence with annotations y = (yi,...,V,), its word-level input is marked as
X = (x,x...,%,), where x; is the i-th word; its character-level input is recorded as
¢ = (co,C11:€C12---,C1,,C215--.,Cn,_), Where ¢;; is the j-th character for word w; and ¢;

is the space character after w;. These notations are also summarized in Table 2-1.
Now, we first discuss the multi-task learning strategy and then introduce the architecture

in a bottom-up fashion.

2.2.1 Multi-task Learning Strategy

As shown in Fig. 2—1, our language model and sequence labeling model share the same character-
level layer, which fits the setting of multi-task learning and transfer learning. However, different
from typical models of this setting, our two tasks are not strongly related. This discordance

makes our problem more challenging. E.g., although a naive co-training setting, which directly

_9__
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s for our

uses the output from character-level layers, could be effective in several scenario
two tasks, it would hurt the performance. This phenomenon would be further discussed in the
experiment section.

To mediate these two tasks, we transform the output of character-level layers into different
semantic spaces for different objectives. This strategy allows character-level layers to focus on
general feature extraction and lets the transform layers select task-specific features. Hence, our
language model can provide related knowledge to the sequence labeling, without forcing it to

share the whole feature space.

2.2.2 Character-level Layer

Character-level neural language models are trained purely on unannotated sequence data but
can capture the underlying style and structure. For example, it can mimic Shakespeare’s writing
and generate sentences of similar styles, or even master the grammar of programming languages
(e.g., XML, ISTX, and C) and generate syntactically correct codes!?®!. Accordingly, we adopted
the character-level Long Short Term Memory (LSTM) networks to process character-level
input. Aiming to capture lexical features instead of remembering words’ spelling, we adjust the
prediction from the next character to the next word. As in Fig. 21, the character-level LSTM
would only make predictions for the next word at word boundaries (i.e., space characters or ¢; ).

Furthermore, we coupled two LSTM units to capture information in both forward and
backward directions. Although it seems similar to the bi-LSTM unit, the outputs of these two
units are processed and aligned differently. Specifically, we record the output of forward LSTM

at ¢; asf;, and the output of backward LSTM at ¢; asr;.

2.2.3 Highway Layer

In computer vision, Convolutional Neural Networks (CNN) has been proved to be an effective
feature extractor, but its output needs to be further transformed by fully-connected layers to
achieve the state-of-the-art. Bearing this in mind, it becomes natural to stack additional layers
upon the flat character-level LSTMs. More specifically, we employ highway units!?®!, which
allow unimpeded information flowing across several layers. Typically, highway layers conduct
nonlinear transformationasm = H(n) = to g(Wyn+by)+(1 —t)On, where © is element-wise
product, g(-) is a nonlinear transformation such as ReLLU in our experiments, t = o-(Wyn + br)
is called transform gate and (1 — t) is called carry gate.

In our final architecture, there are four highway units, named forward-to-LM,
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forward-to-SL, backward-to-LM, and backward-to-SL. The first two transfer f;

into f*; and fY;, and the last two transfer r; into r%; and r™;. f*; and r"; are used in the language

model, while fN; and rY; are used in the sequence labeling.

2.2.4 Word-level Layer

Bi-LSTM is adopted as the word-level structure to capture information in both directions. As
shown in Fig. 2-1, we concatenate f~; and rY,_; with word embeddings and then feed them
into the bi-LSTM. Note that, in the backward character-level LSTM, ¢;_;_ is the space character
before word x;, therefore, fN; would be aligned and concatenated with rY,_; instead of rY;. For
example, in Fig. 2-1, the word embeddings of ‘Pierre’ will be concatenated with the output
of the forward-to-SL over ‘.. .Pierre_’ and the output of the backward-to-SL over
‘.. .erreiP_’.

As to word-level knowledge, we chose to fine-tune pre-trained word embeddings, instead
of co-training the whole word-level layer. This is because most parameters of our word-level
model come from word embeddings, and fine-tuning pre-trained word embeddings have been
verified to be effective in leveraging word-level knowledge!!®!. Besides, current word embedding
methods can easily scale to the large corpus; pre-trained word embeddings are available in many
languages and domains!?®!. However, this strategy cannot be applied to character-level layers,
since the embedding layer of character-level layers contains very few parameters. Based on
these considerations, we applied different strategies to leverage word-level knowledge from

character-level.

2.2.5 CREF for Sequence Labeling

Label dependencies are crucial for sequence labeling tasks. For example, in NER task with
BIOES annotation, it is not only meaningless but illegal to annotate I-PER after B-ORG (i.e.,
mixing the person and the organization). Therefore, jointly decoding a chain of labels can
ensure the resulting label sequence to be meaningful. Conditional random field (CRF) has
been included in most state-of-the-art models to capture such information and further avoid
generating illegal annotations. Consequently, we build a CRF layer upon the word-level LSTM.

For training instance (x;,¢;,y;), we suppose the output of word-level LSTM is Z; =
(Zi1,2i2, - - -, Z;,,). CRF models describe the probability of generating the whole label sequence

with regard to (x;, ¢;) or Z. That is, p(¥|x;, ¢;) or p(Y|Z), where § = (31, ..., ¥,) is a generic
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label sequence. Similar to!'%!, we define this probability as follows.

[Ti=1 6(j-15 9): 2))
Zyeve [T 60 1, v}, 2))

p(yIx;, ;) = (2-1)

Here, Y(Z) is the set of all generic label sequences, ¢(y;-1,y;,z;) = exp(Wy,_, ,. 2 + by, .),
where Wy, ;. and by, . are the weight and bias parameters corresponding to the label pair

(Vj-1 ¥))-
For training, we minimize the following negative log-likelihood.

Jcrr = — Z logp(y:|Z;) (2-2)

And for testing or decoding, we want to find the optimal sequence y* that maximizes the
likelihood.

y' = arg max p(y|Z) (2-3)

Although the denominator of Eq. 2—-1 is complicated, we can calculate Egs. 2-2 and 2-3
efficiently by the Viterbi algorithm.

2.2.6 Neural Language Model

The language model is a family of models describing the generation of sequences. In a neural
language model, the generation probability of the sequence x = (x,..., x,) in the forward

direction (i.e., from left to right) is defined as

N
pf(xl, cen x,,) = npf(xi|xl, cees xi—l)
i=1

where ps(x;|xi, ..., x;-1) is computed by NN.
In this chapter, our neural language model makes predictions for words but takes the
character sequence as input. Specifically, we would calculate p¢(xi|co_,...,Ci—1,1,. .., Ci-1, )

instead of p¢(x;|x, ..., x;_1). This probability is assumed as

exp(Wh Y1)
)IFS exp(ng ™)

pr(xilco ..., cim1, ) =

where w,, is the weight vector for predicting word x;. In order to extract knowledge in both

directions, we also adopted a reversed-order language model, which calculates the generation

12—
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# of Sentences
Dataset

Train Dev Test

CoNLLO03 NER 14,987 | 3,466 | 3,684
CoNLLOO chunking || 7,936 | 1,000 | 2,012
WSJ 38,219 | 5,527 | 5,426

Table 2-2 Dataset summary.

probability from right to left as

N
Pr(X1, o Xn) = l_[pr(xilc,-+1,_, e Cn )
i=1

exp(w/, )

S, exp(wl ™)

where p,(X;|Cis1, .- sCn ) =

The following negative log likelihood is applied as the objective function of our language model.

Jum == ) logpp(xi) = ) logp(x;) (2-4)

2.2.7 Joint Model Learning

By combining Eqs. 2-2 and 2—4, we can write the joint objective function as
T == 3" (pilz) + Alogpy(x) + logp,(x)) (2-5)

where A is a weight parameter. In our experiments, A is always set to 1 without any tuning.
In order to train the neural network efficiently, stochastic optimization has been adopted.
And at each iteration, we sample a batch of training instances and perform an update according

to the summand function of Eq. 2-5: p(y:|Z;) + A(logp(x;) + logp,(x;))

2.3 Experiments

Here, we evaluate LM-LSTM-CRF on three benchmark datasets: the CoNLL 2003 NER
dataset*”!, the CoNLL 2000 chunking dataset!*!!, and the Wall Street Journal portion of Penn
Treebank dataset (WSJ)B2.

e CoNLLO03 NER contains annotations for four entity types: PER, LOC, ORG, and MISC.

It has been separated into training, development and test sets.
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e CoNLLO00 chunking defines eleven syntactic chunk types (e.g., NP, VP) in addition
to Other. It only includes training and test sets. Following previous works/?*, we
sampled 1000 sentences from training set as a held-out development set.

e WSJ contains 25 sections and categorizes each word into 45 POS tags. We adopt the
standard split and use sections 0-18 as training data, sections 19-21 as development data,
and sections 22-24 as test data!®3.

The corpus statistics are summarized in Table 2—2. We report the accuracy for the WSJ

dataset. And in the first two datasets, we adopt the official evaluation metric (micro-averaged
F)), and use the BIOES scheme®*!. Also, in all three datasets, rare words (i.e., frequency less

than 5) are replaced by a special token (<UNK>).

2.3.1 Network Training

For a fair comparison, we didn’t spend much time on tuning parameters but borrow the initial-
ization, optimization method, and all related hyper-parameter values (except the state size of
LSTM) from the previous work!!!. For the hidden state size of LSTM, we expand it from 200
to 300, because introducing additional knowledge allows us to train a larger network. We will
further discuss this change later. Since the CoNLLOO is similar to the CoNLL03 NER dataset,
we conduct experiments with the same parameters on both tasks.

Initialization. We use GloVe 100-dimension pre-trained word embeddings released by Stan-
ford! and randomly initialize the other parameters!®> 3¢,

Optimization. We employ mini-batch stochastic gradient descent with momentum. The batch

size, the momentum and the learning rate are set to 10, 0.9 and 3, = where 7 is the initial

10
1+pt°
learning rate and p = 0.05 is the decay ratio. Dropout is applied in ogr model, and its ratio is
fixed to 0.5. To increase stability, we use gradient clipping of 5.0.

Network Structure. The hyper-parameters of character-level LSTM are set to the same value
of word-level bi-LSTM. We fix the depth of highway layers as 1 to avoid an over-complicated
model.

Note that some baseline methods (e.g.,[***") incorporate the development set as a part
of training. However, because we are using early stopping based on the evaluation on the

development set, our model is trained purely on the training set.

'http://nlp.stanford.edu/projects/glove/

— 14—
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2.3.1.1 Compared Methods

We consider three classes of baseline sequence labeling methods in our experiments.

e Sequence Labeling Only. Without any additional supervision or extra resources,
LSTM-CRF?* and LSTM-CNN-CRF!"'! are the current state-of-art methods. We also
list some top reported performance on each dataset!!® 24 27 33, 37401

¢ Joint Model with Other Supervised Tasks. There are several attempts!'®- 2" to enhance
sequence labeling tasks by introducing additional annotations from other related tasks
(e.g., enhance NER with entity linking labels).

e Joint Model with Language Model: Language models have been employed by some
recent works to extract knowledge from raw text and thus enhancing sequence labeling
task. TagLM!?¥ leverages pre-trained language models and shows the effectiveness with
the large external corpus, but the large model scale and long training time make it hard
to re-run this model. Another work!>! also incorporates the sequence labeling task with
the language model.

For comparison, we tune the parameters of three most related baselines!!® 2% 231! " and report
the statics of the best working parameter setting. Besides, we index these models by number,

and summarize the results in Tables 2-3, 2—4 and 2-6.

2.3.2 Performance Comparison

In this section, we focus on the comparisons between LM-LSTM-CRF and previous state-of-the-
arts, including both effectiveness and efficiency. As demonstrated in Tables 2-3, 2—4 and 2-6,
LM-LSTM-CRFsignificantly outperforms all baselines without additional resources. Moreover,
even for those baselines with extra resources, LM-LSTM-CRF beats most of them and is only
slightly worse than TagLLM (index 4)!?4.

Tagl .M (index 4) is equipped with both extra corpoa (about 4000X larger than the CoONLLO03
NER dataset) and a tremendous pre-trained forward language model (4096-8192-10242)141,
Due to the expensive resources and time required by 4096-8192-1024, even the authors of

Tagl.M failed to train a backward language model of the same size, instead, chose a much

"Implementations: https://github.com/xuezhemax/lasagnenlp (Ma et al. 2016), https://github.
com/glample/tagger (Lample et al. 2016) and https://github.com/marekrei/sequence-labeler (Rei
2017)

24096-8192-1024 is composed of character-level CNN with 4096 filters, 2 layers of stacked LSTMs with 8192 hidden

units each and a 1024-dimension projection unit.
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LSRR F AL s L

F, score
Extra Resource Index & Model
Type Value (+std)
0) Collobert et al. 20117 | reported | 89.59
gazetteers
1) Chiu et al. 20167 reported | 91.62+0.33
AIDA dataset 2) Luo et al. 2015 reported | 91.20
CoNLL 2000 / .
3) Yang et al. 2017’ reported | 91.26
PTB-POS dataset
1B Word dataset & .
4) Peters et al. 20177+ reported | 91.93+0.19
4096-8192-1024
1B Word dataset 5) Peters et al. 20177* reported | 91.62+0.23
6) Collobert et al. 20117 | reported | 88.67
7) Luo et al. 2015 reported | 89.90
8) Chiu et al. 20167 reported | 90.91+0.20
9) Yang et al. 20177 reported | 91.20
10) Peters et al. 20177 reported | 90.87+0.13
11) Peters et al. 2017 | reported | 90.79+0.15
mean 87.38+0.36
None 12) Rei 2017 T+ max 87.94
reported | 86.26
mean 90.76+0.08
13) Lample et al. 2016”7 | max 91.14
reported | 90.94
mean 91.37+0.17
14) Ma et al. 20167 max 91.67
reported | 91.21
i mean 91.71+0.10
15) LM-LSTM-CRF **
max 91.85

Table 2-3 F; score on the CONLL0O3 NER dataset. We mark models adopting pre-trained word embedding

as T, and record models which leverage language models as .

smaller one (LSTM-2048-512"). It is worth noting that, when either extra corpus or 4096-

'LSTM-2048-512 is composed of a single-layer LSTM with 2048 hidden units and a 512-dimension projection unit.
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8192-1024 is absent, LM-LSTM-CRF shows significant improvements over TagLM (index
5,10 and 11).

Also, LSTM-CNN-CRF outperforms LSTM-CREF in our experiments, which is different
from!*?!. During our experiments, we discover that, when trained on CPU, LSTM-CNN-CRF
only reaches 90.83 F; score on the NER dataset, but gets 91.37 F; score when trained on GPU.
We conjecture that this performance gap is due to the difference of runtime environments.
Therefore, we conduct all of our experiments on GPU. Additionally, we can observe that,
although co-trained with language model, results of index 12 fails to outperform LSTM-CNN-
CRF or LSTM-CREF. The reason of this phenomenon could be complicated and beyond the
scope of this chapter. However, it verified the effectiveness of our method, and demonstrated

the contribution of outperforming these baselines.

2.3.2.1 NER

First of all, we have to point out that the results of index 1, 4, 8, 10 and 11 are not directly
comparable with others since their final models are trained on both training and development
set, while others are trained purely on the training set. As mentioned before, LM-LSTM-
CRF outperforms all baselines except TagLM (index 4). For a thorough comparison, we also
compare to its variants, TagLM (index 5), TagL.M (index 10) and TagLM (index 11). Both
index 10 and 11 are trained on the CoNLLO3 dataset alone, while index 11 utilizes language
model and index 10 doesn’t. Comparing F, scores of these two settings, we can find that TagLM
(index 11) even performs worse than TagLM (index 10) , which reveals that directly applying
co-training might hurt the sequence labeling performance. We will also discuss this challenge
later in the Highway Layers & Co-training section.

Besides, changing the forward language model from 4096-8192-1024 to LSTM-
2048-512, TaglM (index 5) gets a lower F,; score of 91.62+0.23. Comparing this score
to ours (91.71+0.10), one can verify that pre-trained language model usually extracts a large
portion of unrelated knowledge. Relieving such redundancy by guiding the language model

with task-specific information, our model is able to conduct both effective and efficient learning.

2.3.2.2 POS Tagging

Similar to the NER task, LM-LSTM-CREF outperforms all baselines on the WSJ portion of the
PTB POS tagging task. Although the improvements over LSTM-CRF and CNN-LSTM-CRF
are less obvious than those on the CoONLLO3 NER dataset, considering the fact that the POS
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Accuracy
Ind & Model
Type Value (+std)
0) Collobert et al. 20117 || reported | 97.29
16) Manning 2011 reported | 97.28
17) Sggaard 2011 reported | 97.50
18) Sun 2014 reported | 97.36
mean 96.97+0.22
12) Rei 20177* max 97.14
reported | 97.43
meantstd | 97.35+0.09
13) Lample et al. 20167
maximum | 97.51
mean+std | 97.42+0.04
14) Ma et al. 2016" maximum | 97.46
reported | 97.55
. meanzstd | 97.53+0.03
15) LM-LSTM-CRF *
maximum | 97.59

Table 2—4 Accuracy on the WSJ dataset. We mark models adopting pre-trained word embedding as ¥, and

record models which leverage language models as i.

Model CoNLLO3 NER WSJ POS CoNLLOO Chunking
h FScore h | Accuracy || h FScore
LSTM-CRF 46 90.76 37 97.35 26 94.37
LSTM-CNN-CRF || 7 91.22 21 97.42 6 95.80
LM-LSTM-CRF 6 91.71 16 97.53 5 95.96
LSTM-CRF* 4 91.19 97.44 2 95.82
LSTM-CNN-CRF* || 3 90.98 7 96.98 2 95.51

Table 2-5 Training statistics of TaglLM (index 4 and 5) and LM-LSTM-CRF on the CoNLL03 NER dataset.
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tagging task is believed to be easier than the NER task and current methods have achieved
relatively high performance, this improvement could still be viewed as significant. Moreover,
it is worth noting that for both NER and POS tagging tasks, LM-LSTM-CREF achieves not only
higher F; scores, but also with smaller variances, which further verifies the superiority of our

framework.

2.3.2.3 Chunking

In the chunking task, LM-LSTM-CREF also achieves relatively high F; scores, but with slightly
higher variances. Considering the fact that this corpus is much smaller than the other two (only
about 1/5 of WSJ or 1/2 of CoNLLO3 NER), we can expect more variance due to the lack
of training data. Still, LM-LSTM-CREF outperforms all baselines without extra resources, and

most of the baselines trained with extra resources.

2.3.2.4 Efficiency

We implement LM-LSTM-CRF! based on the PyTorch library?>. Models has been trained on
one GeForce GTX 1080 GPU, with training time recorded in Table 2-7.

In terms of efliciency, the language model component in LM-LSTM-CREF only introduces
a small number of parameters in two highway units and a soft-max layer, which may not have
a very large impact on the efficiency. To control variables like infrastructures, we further
re-implemented both baselines, and report their performance together with original implemen-
tations. From the results, these re-implementations achieve better efficiency comparing to the
original ones, but yield relative worse performance. Also, LM-LSTM-CREF achieves the best
performance, and takes twice the training time of the most efficient model, LSTM-CNN-CRF*.
Empirically, considering the difference among the implementations of these models, we think
these methods have roughly the same efficiency.

Besides, we list the required time and resources for pre-training model index 4 and 5 on the
NER task in Table 2-5*!1, Comparing to these language models pre-trained on external corpus,
our model has no such reliance on extensive corpus, and can achieve similar performance with
much more concise model and efficient training. It verifies that our LM-LSTM-CRF model can
effectively leverage the language model to extract task-specific knowledge to empower sequence

labeling.

'"https://github.com/LiyuanLucasLiu/LM-LSTM-CRF
*http://pytorch.org/
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F, score
Extra Resource || Ind & Model
Type Value (+std)
19) Hashimoto et al. 2016" | reported | 95.77
PTB-POS
20) Spgaard et al. 20167 reported | 95.56
CoNLL 2000 / _
3)Yang et al. 2017 reported | 95.41
PTB-POS dataset
1B Word dataset || 4) Peters et al. 20177+ reported | 96.37+0.05
21) Hashimoto et al. 20167 | reported | 95.02
22) Spgaard et al. 20167 reported | 95.28
9) Yang et al. 20177 reported | 94.66
mean 94.24+0.11
12) Rei 20177# max 94.33
None
reported | 93.88
mean 94.37+0.07
13) Lample et al. 2016
maximum | 94.49
. mean 95.80+0.13
14) Ma et al. 2016"
maximum | 95.93
. mean 95.96+0.08
15) LM-LSTM-CRF *
maximum | 96.13

Table 2—6 F,; score on the CoNLLOO chunking dataset. We mark models adopting pre-trained word

embedding as t, and record models which leverage language models as .

Ind & Model F;score | Module Time - Device
15) LM-LSTM-CRF | 91.71 total 6 h-GTX 1080
LSTM-2048-512 320 h-Telsa K40
5) Peters et al. 2017 | 91.62
LSTM-2048-512 320 h-Telsa K40
4096-8192-1024 | 14112 h-Telsa K40
4) Peters et al. 2017 | 91.93
LSTM-2048-512 320 h-Telsa K40

Table 2—7 Training time and performance of LSTM-CRF, LSTM-CNN-CRF and LM-LSTM-CREF on three

datasets. Our re-implementations are marked with *
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Model State Size | Fyscore+std | Recall+std | Precision+std

300 91.71+£0.10 | 92.14+0.12 | 91.30+0.13

LM-LSTM-CRF | 200 91.63+0.23 | 92.07+0.22 | 91.19+0.30
100 91.13+0.32 | 91.60+0.37 | 90.67+0.32

300 90.76+0.08 | 90.82+0.08 | 90.69+0.08

LSTM-CRF 200 90.41+0.07 | 90.63+0.07 | 90.20+0.07
100 90.74+0.22 | 91.08+0.50 | 90.42+0.17

300 91.22+0.19 | 91.70+£0.16 | 90.74+0.27

LSTM-CNN-CRF | 200 91.37+0.17 | 91.08+0.53 | 90.58+0.11
100 91.18+0.10 | 91.56+0.16 | 90.81+0.15

Table 2—8 Effect of hidden state size of LSTM

2.3.3 Analysis

To analyze the performance of LM-LSTM-CRF , we conduct additional experiments on the
CoNLLO3 NER dataset.

2.3.3.1 Hidden State Size

To explore the effect of model size, we train our model with different hidden state sizes. For
comparison, we also apply the same hidden state sizes to LSTM-CRF and LSTM-CNN-CRF.
From Table 2—8, one can easily observe that the F; score of LM-LSTM-CREF keeps increasing
when the hidden state size grows, while LSTM-CNN-CRF has a peak at state size 200 and
LSTM-CREF has a drop at state size 200. This phenomenon further verified our intuition of

employing the language model to extract knowledge and prevent overfitting.

2.3.3.2 Highway Layers & Co-training

To elucidate the effect of language model' and highway units, we compare LM-LSTM-CRF with
its two variants, LM-LSTM-CRF_NL and LM-LSTM-CRF_NH . The first keeps highway units,
but optimizes Jcrr alone; the second jointly optimizes Jcgrr and Iz, but without highway
units. As shown in Table 2-9, LM-LSTM-CRF_NH yields worse performance than LM-LSTM-

CRF_NL . This observation accords with previous comparison between Tagl.M (index 10) and

'the perplexities of the forward language model on CoNLL03 NER'’s training / development / test sets are 52.87 / 55.03 /
50.22.

21—
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State Size | Model Fiscore+std | Recall+std | Precision+std
LM-LSTM-CRF 91.71£0.10 | 92.14+0.12 | 91.30+0.13
300 LM-LSTM-CRF_NL | 91.43+0.09 | 91.85+0.18 | 91.01+0.19
LM-LSTM-CRF_NH | 91.16+0.22 | 91.67+0.28 | 90.66+0.23
LM-LSTM-CRF 91.63+0.23 | 92.07+0.22 | 91.19+0.30
200 LM-LSTM-CRF_NL | 91.44+0.10 | 91.95+0.16 | 90.94+0.16
LM-LSTM-CRF_NH | 91.34+0.28 | 91.79+0.18 | 90.89+0.30
LM-LSTM-CRF 91.13+0.32 | 91.60+0.37 | 90.67+0.32
100 LM-LSTM-CRF_NL | 91.17+0.11 | 91.72+0.14 | 90.61+0.21
LM-LSTM-CRF_NH | 91.01+0.19 | 91.50+0.21 | 90.53+0.30

Table 2-9 Effect of language model and highway

Tagl.M (index 11) on the CoNLLO3 NER dataset. We conjecture that it is because the NER
task and the language model is not strongly related to each other. In summary, our proposed

co-training strategy is effective and introducing the highway layers is necessary.

2.4 Related Work

There exist two threads of related work regarding the topics in this chapter, which are sequence
labeling and how to improve it with additional information.

Sequence Labeling. As one of the fundamental tasks in NLP, linguistic sequence labeling, in-
cluding POS tagging, chunking, and NER, has been studied for years. Handcrafted features were
widely used in traditional methods like CRFs, HMMs, and maximum entropy classifiers/ >8],
but also make it hard to apply them to new tasks or domains. Recently, getting rid of hand-
crafted features, there are attempts to build end-to-end systems for sequence labeling tasks, such
as BILSTM-CNNPB7I LSTM-CRF!?!| and the current state-of-the-art method in NER and POS
tagging tasks, LSTM-CNN-CRF!'%. These models all incorporate character-level structure, and
report meaningful improvement over pure word-level model. Also, CRF layer has also been
demonstrated to be effective in capturing the dependency among labels. Our model is based
on the success of LSTM-CRF model and is further modified to better capture the char-level
information in a language model manner.

Leveraging Additional Information. Integrating word-level and character-level knowledge has

been proved to be helpful to sequence labeling tasks. For example, word embeddings!?!-??! can
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be utilized by co-training or pre-training strategies!'® 2!, However, none of these models utilizes
the character-level knowledge. Although directly adopting character-level pre-trained language
models could be helpful®!. Such pre-trained knowledge is not task-specific and requires a larger
neural network, external corpus, and longer training. Our model leverages both word-level and
character-level knowledge through a co-training strategy, which leads to a concise, effective,
and efficient neural network. Besides, unlike other multi-task learning methods, our model has
no reliance on any extra annotation!*! or any knowledge base!*’!. Instead, it extracts knowledge

from the self-contained order information.
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Chapter 3 Named Entities Recognition in Social Media

3.1 Introduction

Named entity recognition (NER) is one of the first and most important steps in Information
Extraction pipelines. Generally, it is to identify mentions of entities (persons, locations, organi-
zations, etc.) within unstructured text. However, the diverse and noisy nature of user-generated
content as well as the emerging entities with novel surface forms make NER in social media
messages more challenging.

The first challenge brought by user-generated content is its unique characteristics: short,
noisy and informal. For instance, tweets are typically short since the number of characters is
restricted to 140 and people indeed tend to pose short messages even in social media without
such restrictions, such as YouTube comments and Reddit. ! Hence, the contextual information
in a sentence is very limited. Apart from that, the use of colloquial language makes it more
difficult for existing NER approaches to be reused, which mainly focus on a general domain and
formal text®® 3!, State-of-the-art NER softwares (e.g. Standford Corenlp) are less effective
on such social media messages®!!. Due to the informal and contemporary nature of these
micro-posts, performance still lags far behind that on formal text genres such as newswire.

Another challenge of NER in noisy text is the fact that there are large amounts of emerging
named entities and rare surface forms among the user-generated text, which tend to be tougher

to detect!®? and recall thus is a significant problem!>!!.

By way of example, the surface form
“kktny”, in the tweet “so.. kktnyin 30 mins?”, actually refers to anew TV series called “Kourtney
and Kim Take New York”, which even human experts found hard to recognize. Additionally, it
is quite often that netizens mention entities using rare morphs as surface forms. For example,
“black mamba”, the name for a venomous snake, is actually a morph that Kobe Bryant created
for himself for his aggressiveness in playing basketball games>*!. Such morphs and rare surface
forms are also very difficult to detect and classify.

This task will evaluate the ability to detect and classify novel, emerging, singleton named
entities in noisy text. Detecting commonly-mentioned entities tends to be easier than the
rarer, more unusual surface forms. Similarly, entities with unusual surface forms, or that are

[52]

simply rare, tend to be tougher to detect'>~', with recall being a significant problem in rapidly-

The average length of the sentences in this shared task is about 20 tokens per sentence.
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changing text typesi®!l. However, the entities that are common in newly-emerging texts such
as newswire or social media are often new, not having been mentioned in prior datasets. This
poses a challenge to NER systems, where in many deployments, unusual, previously-unseen
entities need to be detected reliably and with high recall. In the shared task, we are provided
with turbulent data containing few repeated entities, drawn from rapidly-changing text types or
sources of non-mainstream entities.

The goal of this chapter is to present our system participating in the Novel and Emerging
Named Entity Recognition shared task at the EMNLP 2017 Workshop on Noisy User-generated
Text (W-NUT 2017), which aims for NER in such noisy user-generated text. We investigate
a multi-channel BiLSTM-CRF neural network model in our participating system, which is
described in Section 3.3. The details of our implementation are in presented in Section 3.4,

where we also present some conclusion from our experiments.

3.2 Problem Definition

The NER is a classic sequence labeling problem, in which we are given a sentence, in the form
of a sequence of tokens w = (wy, wy, ..., w,,), and we are required to output a sequence of token
labels 'y = (y1, y2, ..., ¥). In this specific task, we use the standard BIO2 annotation, and each
named entity chunk are classified into 6 categories, namely Person, Location (including GPE,
facility), Corporation, Consumer good (tangible goods, or well-defined services), Creative
work (song, movie, book, and so on) and Group (subsuming music band, sports team, and

non-corporate organizations).

3.3 Combining linguistic structures as indirect supervision

In this section, we will first introduce the overview of our proposed model and then present each

part of the model in detail.

3.3.1 Overview

Figure 3—1 shows the overall structure of our proposed model, instead of solely using the original
pretrained word embeddings as the final word representations, we construct a comprehensive
word representation for each word in the input sentence. This comprehensive word representa-
tions contain the character-level sub-word information, the original pretrained word embeddings

and multiple syntactical features. Then, we feed them into a Bidirectional LSTM layer, and thus
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we have a hidden state for each word. The hidden states are considered as the feature vectors
of the words by the final CRF layer, from which we can decode the final predicted tag sequence

for the input sentence.

Output NER ollollscw|| 0O 0 0 0
LabeIS A A A A A A A

CRF Layer
BiLSTM-CRF J \ A A A A a A
Sequence
Labeling o _
\ Bidirectional-LSTM Layer
f
Comprehensive
Word

Representations

So .. kktny in 30 mins ?

Figure 3—1 Overview of our approach.

3.3.2 Comprehensive Word Representations

In this subsection, we present our proposed comprehensive word representations. We first
build character-level word representations from the embeddings of every character in each word
using a bidirectional LSTM. Then we further incorporate the final word representation with
the embedding of the syntactical information of each token, such as the part-of-speech tag, the
dependency role, the word position in the sentence and the head position. Finally, we combine

the original word embeddings with the above two parts to obtain the final comprehensive word
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representations.

3.3.2.1 Character-level Word Representations

In noisy user-generated text analysis, sub-word (character-level) information is much more
important than that in normal text analysis for two main reasons: 1) People are more likely to
use novel abbreviations and morphs to mention entities, which are often out of vocabulary and
only occur a few times. Thus, solely using the original word-level word embedding as features
to represent words is not adequate to capture the characteristics of such mentions. 2) Another
reason why we have to pay more attention to character-level word representation for noisy text
is that it is can capture the orthographic or morphological information of both formal words and
Internet slang.

There are two main network structures to make use of character embeddings: one is CNN>4!
and the other is BILSTM>!, BiLSTM turns to be better in our experiment on development
dataset. Thus, we follow Lample et al. (%) to build a BILSTM network to encode the characters
in each token as Figure 3—2 shows. We finally concatenate the forward embedding and backward

embedding to the final character-level word representation.

Comprehensive Word Representation

A
- N
Character-level Word Representation Word-level Word - Syntactical Word
Representation  Representation
- N
HEEEEN QEEEEEN EEEEEE
R R R R R R
Lookup Syntactic
QQ??? Table Tags
G 0 0 g | e Google

Figure 3-2 Illustration of comprehensive word representations.
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3.3.2.2 Syntactical Word Representations

We argue that the syntactical information, such as POS tags and dependency roles, should also
be explicitly considered as contextual features of each token in the sentence.

TweetNLP and TweeboParser®®>"! are two popular software to generate such syntactical
tags for each token given a tweet. Given the nature of the noisy tweet text, a new set of POS tags
and dependency trees are used in the tool, called Tweebank®!. See Table 3—1 for an example
POS tagging. Since a tweet often contains more than one utterance, the output of TweeboParser
will often be a multi-rooted graph over the tweet.

Word position embedding are included as well as it is widely used in other similar tasks,
like relation classification®®’. Also, head position embeddings are taken into account while
calculating these embedding vectors to further enrich the dependency information. It tries to
exclude these tokens from the parse tree, resulting a head index of -1.

After calculating all 4 types of embedding vectors (POS tags, dependency roles, word
positions, head positions) for every tokens, we concatenate them to form a syntactical word

representation.

Table 3—1 Example of POS tagging for tweets.

Token so | .. | kktny | in | 30 | mins | ?
POS R |, N P|$ N ;

Position | 1 | 2 3 415 6 7
Head 0] -1 0 316 4 | -1

3.3.2.3 Combination with Word-level Word Representations

After obtaining the above two additional word representations, we combine them with the
original word-level word representations, which are just traditional word embeddings.

To sum up, our comprehensive word representations are the concatenation of three parts:
1) character-level word representations, 2) syntactical word representation and 3) original pre-

trained word embeddings.

3.3.3 BiLSTM Layer

LSTM based networks are proven to be effective in sequence labeling problem for they have

access to both past and the future contexts. Whereas, hidden states in unidirectional LSTMs
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only takes information from the past, which may be adequate to classify the sentiment is a
shortcoming for labeling each token. Bidirectional LSTMs enable the hidden states to capture
both historical and future context information and then to label a token.

Mathematically, the input of this BILSTM layer is a sequence of comprehensive word
representations (vectors) for the tokens of the input sentence, denoted as (xy, X3, ...,X,). The
output of this BiLSTM layer is a sequence of the hidden states for each input word vectors,
denoted as (hy, hy, ..., h,). Each final hidden state is the concatenation of the forward E and
backwardﬁ hidden states. We know that

— — = —
h; = Istm(x;, h;_;) , h; = Istm(x;, h;,)

hi=[hi; i]

3.3.4 CRF Layer

It is almost always beneficial to consider the correlations between the current label and neigh-
boring labels since there are many syntactical constrains in natural language sentences. For
example, [-PERSON will never follow a B-GROUP. If we simply feed the above mentioned
hidden states independently to a Softmax layer to predict the labels, then such constrains will
not be more likely to be broken. Linear-chain Conditional Random Field is the most popular
way to control the structure prediction and its basic idea is to use a series of potential function
to approximate the conditional probability of the output label sequence given the input word
sequence.

Formally, we take the above sequence of hidden states h = (hy, h,, ..., h,) as our input to
the CRF layer, and its output is our final prediction label sequence y = (yy, y2, ..., y»), Where y;
is in the set of all possible labels. We denote Y (h) as the set of all possible label sequences.
Then we derive the conditional probability of the output sequence given the input hidden state

sequence is

H:'l:l eXP(W;,I,yih + b}’i—lei)
Dyeym [ CXP(WQfl,y;h +by y)

, where W and b are the two weight matrices and the subscription indicates that we extract the

p(ylh; W, b) =

weight vector for the given label pair (y;_i, y;).

— 30—



B 3L NE 2T S bAo d Chapter 3 Named Entities Recognition in Social Media

To train the CRF layer, we use the classic maximum conditional likelihood estimation to

train our model. The final log-likelihood with respect to the weight matrices is

L(W,b) = > Togp(yilhi; W, b)
(hi.yi)

Finally, we adopt the Viterbi algorithm for training the CRF layer and the decoding the optimal

output sequence y*.

3.4 Experiments

In this section, we discuss the implementation details of our system such as hyper parameter

tuning and the initialization of our model parameters.

3.4.1 Parameter Initialization

For word-level word representation (i.e. the lookup table), we utilize the pretrained word

embeddings’ from GloVe!®!. For all out-of-vocabulary words, we assign their embeddings
by randomly sampling from range [—,/ ﬁ, +4/ % ], where dim is the dimension of word

embeddings, suggested by He et al.('°"). The random initialization of character embeddings are

in the same way. We randomly initialize the weight matrices W and b with uniform samples
from l—, /%, + 4 / % ], r and ¢ are the number of the rows and columns, following Glorot and

Bengio(1®?!). The weight matrices in LSTM are initialized in the same work while all LSTM
hidden states are initialized to be zero except for the bias for the forget gate is initialized to be

1.0, following Jozefowicz et al.(1%%)).

3.4.2 Hyper Parameter Tuning

We tuned the dimension of word-level embeddings from {50, 100, 200}, character embeddings
from {10, 25, 50}, character BiILSTM hidden states (i.e. the character level word representation)
from {20, 50, 100}. We finally choose the bold ones. The dimension of part-of-speech tags,

dependecny roles, word positions and head positions are all 5.

I'The detailed description of the evaluation metric and the dataset are shown in http://noisy-text.github.io/

2017 /emerging-rare-entities.html
2http://nlp.stanford.edu/data/glove.twitter.27B.zip
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As for learning method, we compare the traditional SGD and Adam'®*!. We found that

Adam performs always better than SGD, and we tune the learning rate form {1e-2,1e-3,1e-4}.

3.4.3 Results

To evaluate the effectiveness of each feature in our model, we do the feature ablation experiments

and the results are shown in Table 3-2.

Table 3-2 Feature Ablation

Features F1 (entity) | F1 (surface form)
Word 37.16 34.15
Char(LSTM)+Word 38.24 37.21
POS+Char(LSTM)+Word 40.01 37.57
Syntactical+Char(CNN)+Word 40.12 37.52
Syntactical+Char(LSTM)+Word 40.42 37.62

In comparison with other participants, the results are shown in Table 3-3.

Table 3-3 Result comparison

Team F1 (entity) | F1 (surface form)
Drexel-CCI 26.30 25.26
MIC-CIS 37.06 34.25
FLYTXT 38.35 36.31
Arcada 39.98 37.77
Ours 40.42 37.62
SpinningBytes 40.78 39.33
UH-RIiTUAL 41.86 40.24

3.5 Related Work

Conditional random field (CRF) is a most effective approaches!®> %! for NER and other sequence
labeling tasks and it achieved the state-of-the-art performance previously in Twitter NERPY,
Whereas, it often needs lots of hand-craft features. More recently, Huang et al. ("”") introduced

a similar but more complex model based on BiLSTM, which also considers hand-crafted
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features. Lample et al. (1°°)) further introduced using BiLSTM to incorporate character-level
word representation. Whereas, Ma and Hovy (°¥) replace the BILSTM to CNN to build the
character-level word representation. Limsopatham and Collier (1%)), used similar model and

1691, Based on the previous work, our system

achieved the best performance in the last shared task
take more syntactical information into account, such as part-of-speech tags, dependency roles,

token positions and head positions, which are proven to be effective.
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Chapter 4 Relation Extraction for Named Entities

4.1 Introduction

Relation extraction is an important task for understanding massive text corpora by turning
unstructured text data into relation triples for further analysis. For example, it detects the
relationship “president_of” between entities “Donald Trump” and “United States” in a
sentence. Such extracted information can be used for more downstream text analysis tasks
(e.g. serving as primitives for information extraction and knowledge base (KB) completion, and
assisting question answering systems).

Typically, RE systems rely on training data, primarily acquired via human annotation, to
achieve satisfactory performance. However, such manual labeling process can be costly and
non-scalable when adapting to other domains (e.g. biomedical domain). In addition, when the
number of types of interest becomes large, the generation of handcrafted training data can be
error-prone. To alleviate such an exhaustive process, the recent trend has deviated towards the
adoption of distant supervision (DS). DS replaces the manual training data generation with a
pipeline that automatically links texts to a knowledge base (KB). The pipeline has the following
steps: (1) detect entity mentions in text; (2) map detected entity mentions to entities in KB; (3)
assign, to the candidate type set of each entity mention pair, all KB relation types between their
KB-mapped entities. However, the noise introduced to the automatically generated training data
is not negligible. There are two major causes of error: incomplete KB and context-agnostic
labeling process. If we treat unlinkable entity pairs as the pool of negative examples, false
negatives can be commonly encountered as a result of the insufficiency of facts in KBs, where
many true entity or relation mentions fail to be linked to KBs (see example in Figure 4-1).
In this way, models counting on extensive negative instances may suffer from such misleading
training data. On the other hand, context-agnostic labeling can engender false positive examples,
due to the inaccuracy of the DS assumption that if a sentence contains any two entities holding
arelation in the KB, the sentence must be expressing such relation between them. For example,
entities “Donald Trump” and “United States” in the sentence “Donald Trump flew back to
United States” can be labeled as “president_of” as well as “born_in”, although only an
out-of-interest relation type “travel_to” is expressed explicitly (as shown in Figure 4-1).

To alleviate such exhaustive process, two main lines of work have emerged: weak supervi-

35
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Q1: What is Jack’s nationality?

S1 Donald Trump is the 45t and current President of the United States. Al: Jack is a citizen of Germany. +
S2 Donald Trump is a citizen of the New York City, USA A2: Jack, a native of Germany, like beer. +
S3  Trump traveled on his private jet from UK back to 'Ehe us. A3: Jack just boarded on a flight to France. -
S4 Ellen, a nai}ye of China, went to the United States four years ago. . .
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Figure 4-1 Distant supervision generates training data by linking relation mentions in sentences S1-S4 to
KB and assigning the linkable relation types to all relation mentions. Those unlinkable entity mention pairs
are treated as negative examples. This automatic labeling process may cause errors of false positives
(highlighted in red) and false negatives (highlighted in purple). QA pairs provide indirect supervision for

correcting such errors.
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Figure 4-2 Overall Framework.

sion and distant supervision (DS). Weak supervision relies on a small set of manually-specified
seed instances (or patterns) that are applied in bootstrapping learning to identify more instances
of each type. This assumes seeds are unambiguous and sufficiently frequent in the corpus,
which requires careful seed selection by human. The recent trend has deviated towards the
adoption of distance supervision (DS). DS generates training data automatically by aligning
texts and a knowledge base(KB). The typical workflow is : (1) detect entity mentions in text;

(2) map detected entity mentions to entities in KB; (3) assign, to the candidate type set of each
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entity mention pair, all KB relation types between their KB-mapped entities. The automatically
labeled training corpus is then used to infer types of the remaining candidate entity mentions

and relation mentions (i.e., unlinkable candidate mentions).

Towards the goal of diminishing the negative effects by noisy DS training data, distantly
supervised RE models that deal with training noise, as well as methods that directly improve the
automatic training data generation process have been proposed. These methods mostly involve
designing distinct assumptions to remove redundant training information®'?!. For example,
method applied in"'% ! assumes that for each relation triple in the KB, at least one sentence
might express the relation instead of all sentences. Moreover, these noise reduction systems
usually only address one type of error, either false positives or false negatives. Hence, current

methods handling DS noises still have the following challenges:

1. Lack of trustworthy sources: Current de-noising methods mainly focus on recognizing la-
beling mistakes from the labeled data itself, assisted by pre-defined assumptions or patterns.
They do not have external trustworthy sources as guidance to uncover incorrectly labeled
data, while not at the expense of excessive human efforts. Without other separate information
sources, the reliability of false label identification can be limited.

2. Incomplete noise handling: Although both false negative and false positive errors are observed

to be significant, most existing works only address one of them.

In this chapter, to overcome the above two issues derived from relation extraction with distant
supervision, we study the problem of relation extraction with indirect supervision from external
sources. Recently, the rapid emergence of QA systems promotes the availability of user feedback
or datasets of various QA tasks. We investigate to leverage QA, a downstream application of
relation extraction, to provide additional signals for learning RE models. Specifically, we
use datasets for the task of answer sentence selection to facilitate relation typing. Given a
domain-specific corpus and a set of target relation types from a KB, we aim to detect relation
mentions from text and categorize each in context by target types or Non-Target-Type (None)
by leveraging an independent dataset of QA pairs in the same domain. We address the above
two challenges as follows: (1) We integrate indirect supervision from another same-domain
data source in the format of QA sentence pairs, that is, each question sentence maps to several
positive (where a true answer can be found) and negative (where no answer exists) answer
sentences. We adopt the principle that for the same question, positive pairs of (question,
answer) should be semantically similar while they should be dissimilar from negative pairs. (2)

Instead of differentiating types of labeling errors at the instance level, we concentrate on how to



Chapter 4 Relation Extraction for Named Entities Ei G KA 2 L

better learn semantic representation of features. Wrongly labeled training examples essentially
misguide the understanding of features. It increases the risk of having a non-representative
feature learned to be close to a relation type and vice versa. Therefore, if the feature learning
process is improved, potentially both types of error can be reduced. (See how QA pairs improve
the feature embedding learning process in Figure 4-3).

To integrate all the above elements, a novel framework, REQUEsT, is proposed. First,
ReQUEST constructs a heterogeneous graph to represent three kinds of objects: relation mentions,
text features and relation types for RE training data labeled by KB linking. Then, REQUEST
constructs a second heterogeneous graph to represent entity mention pairs (include question,
answer entity mention pairs) and features for QA dataset. These two graphs are combined into a
single graph by overlapped features. We formulate a global objective to jointly embed the graph
into a low-dimensional space where, in that space, RE objects whose types are semantically close
also have similar representations and QA objects linked by positive (question, answer) entity
mention pairs of a same question should have close representations. In particular, we design a
novel margin-based loss to model the semantic similarity between QA pairs and transmit such
information into feature and relation type representations via shared features. With the learned
embeddings, we can efficiently estimate the types for test relation mentions. In summary, this
chapter makes the following contributions:

1. We propose the novel idea of applying indirect supervision from question answering datasets
to help eliminate noise from distant supervision for the task of relation extraction.

2. We design a novel joint optimization framework, REQUEST, to extract typed relations in
domain-specific corpora.

3. Experiments with two public RE datasets combined with TREC QA demonstrate that RE-

QuesT improves the performance of state-of-the-art RE systems significantly.

4.2 Definitions and Problem

Our proposed REQUEsT framework takes the following input: an automatically labeled training
corpus D, obtained by linking a text corpus D to a KB (e.g. Freebase) ', a target relation type
set R and a set of QA sentence pairs Dgp4s With extract answers labeled.

Entity and Relation Mention. An entity mention (denoted by m) is a token span in text which
represents an entity e. A relation instance r(ey, e, . . ., €,) denotes some type of relation r € R
between multiple entities. In this chapter, we focus on binary relations, i.e., r(ej,e;). We

define a relation mention (denoted by z) for some relation instance r(ey, e;) as a (ordered) pair
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ID Sentence -

. citizen_of
S1 | Donald Trump is a citizen of the United States. VS RRCtzen u

S2 | Donald Trump was on a flight back to the United States. . BETWEEN_flight

S3 | Ellen, a native of China, came here for school 4 years ago.

Automatically generated relation mentions H BETWEEN_native

None

-
Relation Mentions with Relation Type “citizen_of”:

(“Donald Trump”, “United States”, S1)

L (“Donald Trump”, “United States”, S2)

P
Relation Mentions with Relation Type “Not-of-Interest:

L (“Ellen”, “China”, S1) ) - BETWEEN_native. [} citizen_of
Question: What is Jack’s nationality ? Nh.BETWEEN_citizen
Al: Jack is a citizen of Germany. Positive ./

A2: Jack, a native of Germany, drinks beer every day. Positive - BETWEEN_flight
A3: Jack just boarded on a flight to France. Negative None

lglg

Figure 4-3 Due to the noise in the automatically generated RE training corpus, the associations between
learned feature embeddings and relation types can be affected by the wrongly labeled training examples.
However, the idea of QA pairwise interactions has the potential to correct such embedding deviations by

bringing extra semantic clues from overlapped features in QA corpus.

of entities mentions of e¢; and e, in a sentence s, and represent a relation mention with entity
mentions m; and m, in sentence s as z = (my, my, ).

Knowledge Bases and Target Types. A KB contains a set of entities &y, entity types Y and
relation types R, as well as human-curated facts on both relation instances Iy = {r(ey, e;)} C
Ry xEy X Ey, and entity-type facts Ty = {(e, y)} € Ey X Yy. Target relation type set R covers
a subset of relation types that the users are interested in from W, i.e., R C Ry.

Automatically Labeled Training Corpora. Distant supervision maps the set of entity mentions
extracted from the text corpus to KB entities &y with an entity disambiguation system!’% 7!,
Between any two linkable entity mentions m; and m;, in a sentence, a relation mention z; is
formed if there exists one or more KB relations between their KB-mapped entities e; and e,.
Relations between e; and e, in KB are then associated to z; to form its candidate relation type
set R;, i.e., R; = {r | r(e;, e2) € Ry}.

LetZ = {zi}ﬁ 7 denote the set of extracted relation mentions that can be mapped to KB.
Formally, we represent the automatically labeled training corpus 9, for relation extraction,
using a set of tuples Dy = {(z;, RL-)}I.IZ 7. There exists publicly available automatically labeled
corpora such as the NYT dataset!!”! where relation mentions have already been extracted and

mapped to KB.
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QA Entity Mention Pairs. The set of QA sentence pairs Dpas consists of questions Q in
the same domain as the training text corpus. For each question ¢;, there will be a number of
positive sentences A, each of which contains a correct answer to the question and another set
of negative sentences A; where no answer can be found. And the tokens spans of the exact
answer in each positive is marked as well. For each question, we extract positive QA (ordered)
entity mention pairs P/ from A} and negative entity mention pairs P; from A-. A positive QA
entity mention pair p, contains an entity mention being asked about (question entity mention
my) and an entity mention serving as the answer (answer entity mention m;) to a question. That
being said, we can get one positive QA entity mention pair from each positive answer sentence
if both entity mentions can be found. In contrast, A negative QA entity mention pair does not
follow such pattern for the corresponding question.

Let Q = {q,-}fi‘i denote the set of questions; P = {pk}i\i”l denote all QA entity mention
pairs; P} = {py+ }]va; , denote the set of positive QA entity mention pairs for g;; P; = {pi- },1:]_’;1
denote the set of negative QA entity mention pairs for ¢;. Formally, the QA entity mention pairs

corpus is represented as Do = {(g;, P}, P,-_)}ji‘i-

Definition 1 (Problem Definition).

Given an automatically generated training corpus Dy, a target relation type set R C Ry and
a set of QA sentence pairs Dpas in the same domain, the relation extraction task aims to (1)
extract QA entity mention pairs to generate Do a; (2) estimate a relation type r* € R UfNone}
for each test relation mention, using both the training corpus and the extracted QA pairs with

their contexts.

4.3 Indirect Supervised Approach with Question Answering

Framework Overview. We propose an embedding-based framework with indirect supervision

(illustrated in Figure 4-2) as follows:

1. Generate text features for each relation mention or QA entity mention pair, and construct
a heterogeneous graph using four kinds of objects in combined corpus, namely relation
mentions from RE corpus, entity mention pairs from QA corpus, target relation types and
text features to encode aforementioned signals in a unified form (Section 4.3.1).

2. Jointly embed relation mentions, QA pairs, text features, and type labels into two low-
dimensional spaces connected by shared features, where close objects tend to share the same

types or questions (Section 4.3.2).
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3. Estimate type labels r* for each test relation mention z from learned embeddings, by searching

the target type set R (Section 4.3.3).

4.3.1 Heterogeneous Network Construction

Relation Mentions and Types Generation. We get the relation mentions along with their
heuristically obtained relation types from the automatically labeled training corpus D,. And
we randomly sample a set of unlinkable entity mention pairs as the negative relation mentions

(i.e., relation mentions assigned with type “None”).

QA Entity Mention Pairs Generation. We apply Stanford NER!"?! to extract entity mentions
in each question or answer sentence. First, we detect the target entity being asked about in each
question sentence. For example, in the question “Who is the president of United States”, the
question entity is “United States”. In most cases, a question only contains one entity mention and
for those containing multiple entity mentions, we notice the question entity is mostly mentioned
at the very last. Thus, we follow this heuristic rule to assign the lastly occurred entity mention
to be the question entity mention m, in each question sentence ¢;. Then, in each positive answer
sentence of g;, we extract the entity mention with matched head token and smallest edit string
distance to be the question entity mention m;, and the entity mention matching the exact answer
string to be the answer entity mention m,. Then we form a positive QA entity mention pair
with its context s, px = (my, my, s) € P} for g;. If either m; or m, can not be found, this positive
answer sentence is dropped. We randomly select pairs of entity mentions in each negative
answer sentence to be negative QA entity mention pairs for g; (e.g., if a negative sentence
includes 3 entity mentions, we randomly select negative examples from the 3-2 -1 = 6 different
pairs of entity mentions in total, if we ignore the order), with each negative example marked as
pr’ = (myr,my, s7) € P for g;.

Text Feature Extraction. We extract lexical features of various types from not only the mention
itself (e.g., head token), as well as the context s (e.g., bigram) in a POS-tagged corpus. It is to
capture the syntactic and semantic information for any given relation mentions or entity mention
pairs. See Table 4—1 for all types of text features used, following those in!®> 73! (excluding the
dependency parse-based features and entity type features).

We denote the set of M, unique features extracted from relation mentions Z as ¥, = {f; }]’.\Zzl'
MQA
j=1
As our embedding learning process will combine these two sets of features and their shared ones

and the set of My, unique features extracted of QA entity mention pairs P as Foa = {fj}

will act as the bridge of two embedding spaces, we denote the overall feature set as ¥ = { f; j":’ -

— 41 —
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Table 4—1 Text features for relation mentions used in this work!!® 74! (excluding dependency parse-based
features and entity type features, EM = Entity Mention). (“Donald Trump”, “United States”) is used as an

example relation mention from the sentence “NYC native Donald Trump is the current President of the

United States.”
Feature Description Example
EM head Syntactic head token of each entity mention “HEAD_EMI1_Trump”
EM Token Tokens in each entity mention “TKN_EM]I1_Donald”
Tokens Each token between two EMs “is”, “current”, “President”, “of”
POS tag POS tags of tokens between two EMs “VBZ”,“DT”,“JJ”, “NN”, “IN”, “DT”
Collocations Bigrams in 3-word window of each EM “NYC native”, “native Donald”, ...
EM order Whether EM 1 is before EM 2 “EMI] BEFORE EM?2”
EM distance Number of tokens between the two EMs “EM_DISTANCE_6”
EM context Unigrams before and after each EM “native”, “is”, “the”, “.”
Special pattern Occurrence of pattern “em1_in_em?2” “PATTERN_NULL”
Brown cluster  Brown cluster ID for each token “8_1101111”,“12 111011111111

Heterogeneous Network Construction. After the nodes generation process, we construct a
heterogeneous network connected by text features, relation mentions, relation types, questions,

QA entity mention pairs, as shown in the second column of Figure 4-2.

4.3.2 Joint RE and QA Embedding

This section first introduces how we model different types of interactions between linkable
relation mentions Z, QA entity mention pairs P, relation type labels R and text features ¥ into a
d-dimensional relation vector space and a d-dimensional QA pair vector space. In the relation
vector space, objects whose types are close to each other should have similar representation and
in the QA pair vector space, positive QA mention pairs who share the same question are close
to each other. (e.g., see the 3rd col. in Figure 4-2). We then combine multiple objectives and
formulate a joint optimization problem.

We propose a novel global objective, which employs a margin-based rank loss!”! to
model noisy mention-type associations and utilizes the second-order proximity idea!’®' to model
mention-feature (QA pair-feature) co-occurrences. In particular, we adopt a pairwise margin
loss, following the intuition of pairwise rank!’’! to capture the interactions between QA pairs,

and the shared features ¥, N 4 between relation mentions Z and QA pairs P connect the two

42—



EiEGE KM e X Chapter 4 Relation Extraction for Named Entities

vector spaces.

Modeling Types of Relation Mentions. We introduce the concepts of both mention-feature
co-occurrences and mention-type associations in the modeling of relation types for relation
mentions in set Z.

The first hypothesis involved in modeling types of relation mentions is as follows.

Hypothesis 1 (Mention-Feature Co-occurrence).
If two relation mentions share many text features, they tend to share similar types (close to each
other in the embedding space). If two features co-occur with a similar set of relation mentions,

they tend to have similar embedding vectors.

This is based on the intuition that if two relation mentions share many text features, they
have high distributional similarity over the set of text features ¥, and likely they have similar
relation types. On the other hand, if text features co-occur with many relation mentions in the
corpus, such features tend to represent close type semantics. For example, in sentences s; and s4
in the first column of Figure 4-2, the two relation mentions (“Donald Trump”, “United States”,
s1) and (“Jinping Xi”, “China”, s,) share many text features including “BETWEEN_President”
and they indeed have the same relation type “president_of”

Formally, let vectors z;, ¢; € R4 represent relation mention z; € Z and text feature f; € F,
in the d-dimensional relation embedding space. Similar to the distributional hypothesis?!! in

[76

text corpora, we apply second-order proximity!’®! to model the idea in Hypothesis 1 as follows.

Lzr =- Z Z wi; - log p(f;lz:), (4-1)
L el feF-
where p(fi|z;) = e(z'¢;)/ % e e(z] ¢;/) denotes the probability of f; generated by z;, and
w;; is the co-occurrence frequency between (z;, f;) in corpus D.
For the goal of efficient optimization, we apply negative sampling strategy?!! to sample
multiple false features for each (z;, f;) based on some noise distribution P,(f) o« D;./ 4210 (with
Dy denotes the number of relation mentions co-occurring with f). Term log p(f;|z;) in Eq. (4-1)

is replaced with the term as follows.

\4
log o7(z; ¢;) + Z Efypur) [log o(-z{ ¢;)], (4-2)

v=1
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where o-(x) = 1/(1 + exp(—x)) is the sigmoid function. The first term in Eq. (4-2) models
the observed co-occurrence, and the second term models the V negative feature samples.

In D, , each relation mention z; is associated with a set of candidate types R; in a context-
agnostic setting, which leads to some false associations between z; and r € R; (i.e., false
positives). For example, in the first column of Figure 4-2, the two relation mentions (“Donald
Trump”, “United States”, s) and (“Donald Trump”, “USA”, s,) are assigned to the same relation
types while each mention actually only has one true type. To handle such conflicts, we use the
following hypothesis to model the associations between each linkable relation mention z; (in set

7)) and its noisy candidate relation type set R;.

Hypothesis 2 (Partial-Label Association).
A relation mention’s embedding vector should be more similar (closer in the low-dimensional

space) to its “most relevant” candidate type, than to any other non-candidate type.

Let vector r;, € R? denote relation type 7, € R in the embedding space, the similarity
between (z;, ) is defined as the dot product of their embedding vectors, i.e., ¢(z;, rx) = Z! ry.
R; = R\ R; denotes the set of non-candidate types. We extend the margin-based loss in!”! to
define a partial-label loss ¢; for each linkable relation mention z; € M, .

To comprehensively model the types of relation mentions, we integrate the modeling of
mention-feature co-occurrences and mention-type associations by the following objective, so

that feature embeddings also participate in modeling the relation type embeddings.

A
Oz =Lzr+ ) i+ Z 2115 + Z el (4-3)

where tuning parameter 4 > 0 on the regularization terms is used to control the scale of the
embedding vectors.

Modeling Associations between QA Entity Mention Pairs. We follow Hypothesis 1 to
model the QA pair-feature co-occurrence in a similar way. Formally, let vectors p;, ¢} € R
represent QA entity mention pair p; € P and text features (for entity mentions) f; € Fpain
a d-dimensional QA entity pair embedding space, respectively. We model the corpus-level
co-occurrences between QA entity mention pairs and text features by second-order proximity

as follows.

Lpr == ), > wi-logp(f;lp:) (4-4)

Pi€P fieFoa
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where the term log p( f;|p;) is defined as log p(f;|p;) = log O'(pch})+ZL/:1 Ef <) [log G(—pch},

N

For each QA entity mention pair, if we consider it as a relation mention with an unknown
type, intuitively, positive pairs sharing a same question are relation mentions with the same
relation type or more specifically, are semantically similar relation mentions. In contrast, a
positive pair and a negative pair for a question should be semantically far away from each other.
For example, in Figure 4-3, the embeddings of the entity mention pair in answer sentence A,
should be close to the pair in A, while far away from the pair in A;. To impose such idea, we

model the interactions between QA entity mention pairs based on the following hypothesis.

Hypothesis 3 (QA Pairwise Interaction).
A positive QA entity mention pair’s embedding vector should be more similar (closer in the
low-dimensional space) to any other positive QA entity mention pair, than to any negative QA

entity mention pair of the same question.

Specifically, we use vector p; € R? to represent a positive QA entity mention pair py in the
embedding space. The similarity between two QA entity mention pairs py; and py, is defined
as the dot product of their embedding vectors. For a positive QA entity mention pair p; of a

question g; (e.g. pr € P;), we define the pairwise margin-based loss as follows.

o=y max {01 =@ pi) 9k i) | (4-5)
Pk €P;’,pk2 EP;,kl +k
To integrate both the modeling of QA pair-feature co-occurrence and QA pairs interaction,

we formulate the following objective.

No Ny

Np
A
Opa = Lpr + Z Zfi,k + ) Z ||Pk||§ (4-6)
k=1

i=1 k=1
By doing so, we can extend the semantic relationships between QA pairs to feature embeddings,
such that features of close QA pairs also have similar embeddings. Thus, the learned embed-
dings of text features from QA corpus carry semantic information inferred from QA pairs. The
shared features can propagate such extra semantic knowledge into relation vector space and help
better learn the semantic embeddings of both text features and relation types. While feature
embeddings of both false positive or false negative examples in the training corpus can deviate
towards unrepresentative relation types, the transmitted knowledge from QA space has the po-
tential to adjust such semantic inconsistency. For example, as illustrated in Figure 4-3, the false
labeled examples in s, and s3 lead the features “BETWEEN_flight” and “BETWEEN_native” to
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Algorithm 4-1 Model Learning of REQUEST
Input: labeled training corpus Dy, text features { ¥ }, regularization parameter A, learning rate

a, number of negative samples V, dim. d
Output: relation mention/QA entity mention pair embeddings {z; }/{px }, feature embeddings
{¢j}, {cJ’.}, relation type embedding {ry }
Initialize: vectors {zi},{pk},{cj},{c]’.},{rk} as random vectors
while O in Eq. (4-7) not converge do
Sample one component O, from {Oz, Oga}
if O.,, is Oz then
Sample a mention-feature co-occurrence w;;; draw V negative samples; update {z, ¢}
based on L,
Sample a relation mention z;; get its candidate types R;; update z and {r} based on
OZ - LZF
end if
if O, is Op4 then
Sample a pair-feature co-occurrence w;;; draw V negative samples; update {p, ¢’}
based on Lpr
Sample an positive QA entity mention pair p; of question ¢g;; sample one more positive
pair and one negative pair of question ¢;; update p based on Opa — Lpr
end if

end while

be close to “citizen_of” and “None” type respectively. After injecting the QA pairwise
interactions from the example question, these wrongly placed features are brought back towards
the relation types they actually indicate. Minimizing the objective Og, yields an QA pair
embedding space where, in that space, positive QA mention pairs who share the same question

are close to each other.

A Joint Optimization Problem. Our goal is to embed all the available information for relation
mentions and relation types, QA entity mention pairs and text features into a single d-dimensional
embedding space. An intuitive solution is to collectively minimize the two objectives O and
O 4 as the embedding vectors of overlapped text features are shared across relation vector space

and QA pair vector space. To achieve the goal, we formulate a joint optimization problem as
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min 0= OZ + OQA. (4_7)
{zi}. {c; b {re 1. {pr }. {¢} }

When optimizing the global objective O, the learning of RE and QA embeddings can be mutually
influenced as errors in each component can be constrained and corrected by the other. This
mutual enhancement also helps better learn the semantic relations between features and relation
types. We apply edge sampling strategy!’®! with a stochastic sub-gradient descent algorithm!”®!
to efficiently solve Eq. (4-7). In each iteration, we alternatively sample from each of the two
objectives {Oz, Oy, } a batch of edges (e.g., (z;, f;)) and their negative samples, and update each
embedding vector based on the derivatives. The detailed learning process of REQUEST can be
seen in Algorithm 4—-1. To prove convergence of this algorithm (to the local minimum), we can

adopt the proof procedure in!”8!.

4.3.3 Type Inference

To predict the type for each test relation mention z, we search for nearest neighbor in the target
relation type set R, with the learned embeddings of features and relation types (i.e., {¢;}, {c/},
{rc}). Specifically, we represent test relation mention z in our learned relation embedding space
by z = D¢ 5. (o) €; Where ¥F.(z) is the set of text features extracted from z’s local context s. We

categorize z to None type if the similarity score is below a pre-defined threshold (e.g. n > 0).

4.4 Experiments
4.4.1 Data Preparation and Experiment Setting

Our experiments consists of two different type of datasets, one for relation extraction and
another answer sentence selection dataset for indirect supervision. Two public datasets are used
for relation extraction: NYT!® land KBP!®-%!, The test data are manually annotated with
relation types by their respective authors. Statistics of the datasets are shown in Table 4-2.
Automatically generated training data by distant supervision on these two training corpora have
been used in"'% 8! and is accessible via public links, as well as the test data'. The automatic data
generation process is the same as described in Section 4.2 by utilizing DBpedia Spotlight?, a

state-of-the-art entity disambiguation tool, and Freebase, a large entity knowledge base. As for

'https://github.com/shanzhenren/CoType/tree/master/data/source
‘http://spotlight.dbpedia.org/
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Data sets NYT KBP
#Relation types 24 19
#Documents 294,977 780,549
#Sentences 1.18M 1.51M
#Training RMs 353k 148k
#Text features 2.6M 1.3M
#Test Sentences 395 289

#Ground-truth RMs 3,880 2,209

Table 4-2 Statistics of relation extraction datasets.
QA dataset, we use the answer sentence selection dataset extracted from TREC-QA dataset!®?!
used by many researchers!®>>!. We obtain the compiled version of the dataset from®® 37! which
can be accessed via publicly available link!. Then, we parse this QA dataset to generate QA
entity mention pairs following the steps described in Section 4.3.1. During this procedure, we
drop the question or answer sentences where no valid QA entity mention pairs can be found.
The statistics of this dataset is presented in Table 4-3.
Feature Generation. This step is run on both relation extraction dataset and preprocessed
QA entity mention pairs and sentences. Table 4—1 lists the set of text features of both relation
mentions and QA entity mention pairs used in our experiments. We use a 6-word window to
extract context features for each mention (3 words on the left and the right). We apply the
Stanford CoreNLP tool”? to get POS tags. Brown clusters are derived for each corpus using
public implementation?. The same kinds of features are used in all the compared methods in
our experiments. As the overlapped features in both RE and QA datasets play an important role
in the optimization process, we put the statistics of the shared features in Table 4—4.
Evaluation Sets. The provided train/test split are used in NYT and KBP relation extraction
datasets. The relation mentions in test data have been manually annotated with relation types
in the released dataset (see Table 4-2 for the data statistics). A validation set is created through
randomly sampling 10% of relation mentions from test data, and the rest are used as evaluation
set.
Compared Methods. We compare REQUEST with its variants which model parts of the

proposed hypotheses. Several state-of-the-art relation extraction methods (e.g., supervised,

'https://github.com/xuchen/jacana/tree/master/tree-edit-data
lhttps://github.com/percyliang/brown-cluster
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Versions of QA dataset COMPLETE FILTERED
#Questions 1.4K 186
#Positive Answer Sentences 6.9K 969
#Negative Answer Sentences 49K 5.5K
#Positive entity mention pairs - 969
#Negative entity mention pairs - 28K

Table 4-3 Statistics of the answer sentence selection datasets. The complete version is the raw corpus we
obtain from the public link. The filtered version is the input to REQUESsT after dropping sentences where no

valid QA entity mention pair can be found.

Data sets NYT KBP
% distinct shared features with TREC QA 10.0% 11.6%
% occurrences of shared features with TREC QA  90.1% 85.6%

Table 44 Statistics of overlapped features. For example, if we have the following observations in NYT and
TREC QA respectively: (fi, fi, fi, f», f3) and (fi, >, f1), then % distinct shared features with TREC QA of
NYT is 66.7% (fi, f>) and % occurrences of shared features with TREC QA of NYT is 80.0%.

embedding, neural network) are also implemented (or tested using their published codes):
(1) DS+Perceptron”: adopts multi-label learning on automatically labeled training data
D;. (2) DS+Kernel®®!: applies bag-of-feature kernel®®! to train a SVM classifier using Dy ;
(3) DS+Logistic®": trains a multi-class logistic classifier' on D;; (4) DeepWalk!®!: em-
beds mention-feature co-occurrences and mention-type associations as a homogeneous network
(with binary edges); (5) LINE[®!: uses second-order proximity model with edge sampling on a
feature-type bipartite graph (where edge weight wj; is the number of relation mentions having
feature f; and type r¢); (6) MultiR!"!: is a state-of-the-art distant supervision method, which
models noisy label in 9; by multi-instance multi-label learning; (7) FCMP": adopts neu-
ral language model to perform compositional embedding; (8) DS+SDP-LSTM*°U: current
state-of-the-art in SemEval 2010 Task 8 relation classification task!®*, leverages a multi-channel
input along the shortest dependency path between two entities into stacked deep recurrent neural
network model. We use D, to train the model. (9) DS+LSTM-ER®!: current state-of-the-
art model on ACE2005 and ACE2004 relation classification task!®*°3. It is a multi-layer

"We use liblinear package from https://github.com/cjlinl/liblinear
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Relation Mention ReQuest CoTlype-RM

.. traveling to Amman , Jordan .. /location/location/contains | None

The photograph showed Gov. Ernie | /people/person/place_lived | None
Fletcher of Kentucky ..

. as chairman of the Securities and | /business/person/company | None

Exchange Commission , Christopher

Cox ..

Table 4-5 Case Study.

LSTM-RNN based model that captures both word sequence and dependency tree substructure
information. We use D; to train the model. (10) CoType-RM3!!: A distant supervised model
which adopts the partial-label loss to handle label noise and train the relation extractor.
Besides the proposed joint optimization model, ReQuest-Joint, we conduct experiments
on two other variations to compare the performance (1) ReQuest-QA_RE: This variation
optimizes objective Op4 first and then uses the learned feature embeddings as the initial state
to optimize Oz; and (2) ReQuest-RE_QA: It first optimizes O, then optimizes Op 4 to finely
tune the learned feature embeddings.
Parameter Settings. In the testing of REQUEST and its variants, we set n = 0.35 and A = 10~
and V = 3 based on validation sets. We stop further optimization if the relative change of
O in Eq. (4-7) is smaller than 10~*. The dimensionality of embeddings d is set to 50 for all
embedding methods. For other parameters, we tune them on validation sets and picked the
values which lead to the best performance.
Evaluation Metrics. We adopt standard Precision, Recall and F1 score!®® %®! for measuring
the performance of relation extraction task. Note that all our evaluations are sentence-level or

mention-level (i.e., context-dependent), as discussed in!!!.

4.4.2 Experiments and Performance Study

Performance Comparison with Baselines. To test the effectiveness of our proposed framework
REeQUEsT, we compare with other methods on the relation extraction task. The precision, recall,
F1 scores as well as the model learning time measured on two datasets are reported in Table 4-6.
As shown in the table, REQuEsT achieves superior F1 score on both datasets compared with

other models. Among all these baselines, MultiR and Colype-RM handle noisy training data



EiEGE KM e X Chapter 4 Relation Extraction for Named Entities

NYT!O 111 KBP7%- 801

Method Prec Rec F1 Time Prec Rec F1 Time
DS+Perceptron”! | 0.068 0.641 0.123 15min | 0.233 0.457 0.308 7.7min
DS+Kernel®®! 0.095 0.490 0.158 56hr 0.108 0.239 0.149 9.8hr
DS+Logistic!! 0.258 0.393 0.311 25min | 0.296 0.387 0.335 14min
DeepWalk!®! 0.176  0.224 0.197 1.1hr 0.101 0.296 0.150 27min
LINEL!¢! 0.335 0329 0.332 23min | 0.360 0.257 0.299 1.5min
MultiR ! 0.338 0.327 0.333 5.8min | 0.325 0.278 0.301 4.1min
FCMP! 0.553 0.154 0.240 1.3hr 0.151 0.500 0.301 25min

DS+SDP-LSTMP®! | 0.307 0.532 0.389 21hr 0.249 0300 0.272 10hr
DS+LSTM-ERP?! | 0.373 0.171 0.234 49%hr 0.338 0.106 0.161 30hr
CoType-RMBY 0.467 0380 0.419 2.6min | 0.342 0.339 0.340 1.5min
ReQuEesT-QA_RE | 0.407 0.437 0.422 10.2min | 0.459 0.300 0.363 5.3min
REQUEST-RE_QA | 0.435 0.419 0427 8.0min | 0.356 0.352 0.354 13.2min
ReQuEesT-Joint 0.404 0.480 0.439 4.0min | 0.386 0.410 0.397 5.9min

Table 4-6 Performance comparison on end-to-end relation extraction (at the highest F1 point) on the two

datasets.

while the remaining ones assume the training corpus is perfectly labeled. Due to their nature
of being cautious towards the noisy training data, both MultiR and CoType-RM reach relatively
high results confronting with other models that blindly exploit all heuristically obtained training
examples. However, as external reliable information sources are absent and only the noise from
multi-label relation mentions (while none or only one assigned label is correct) is tackled in these
models, MultiR and CoType-RM underperform REQuEsT. Especially from the comparison with
CoType-RM, which is also an embedding learning based relation extraction model with the idea
of partial-label loss incorporated, we can conclude that the extra semantic inklings provided by

the QA corpus do help boost the performance of relation extraction.

Performance Comparison with Ablations. We experiment with two variations of REQUEsT,
ReQuEsT-QA_RE and REQuUEST-RE_QA, in order to validate the idea of joint optimization. As
presented in Table 4—-6, both REQUEsT-QA_RE and REQuEST-RE_QA outperform most of the
baselines, with the indirect supervision from QA corpus. However, their results still fall behind
ReQuesT’s. Thus, separately training the two components may not capture as much information

as jointly optimizing the combined objective. The idea of constraining each component in the
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joint optimization process proves to be effective in learning embeddings to present semantic

meanings of objects (e.g. features, types and mentions).

4.4.3 Case Study

Example Outputs.  We have done some interesting investigations regarding the type of
prediction errors that can be corrected by the indirection supervision from QA corpus. We have
analyzed the prediction results on NYT dataset from Colype-RM and REQuEsT and find out the
top three target relation types that can be corrected by REQuEsT are “contains_location”,
“work_for”, “place_1l1ived”. Both the issues of KB incompleteness and context-agnostic
labeling are severe for these relation types. For example, there can be lots of not that well-known
suburban areas belonging to a city, a state or a country while not marked in KB. And a person can
has lived in tens or even hundreds places for various lengths of period. These are hard to be fully
annotated into a KB. Thus, the automatically obtained training corpus may end up containing a
large percentage of false negative examples for such relation types. On the other hand, there are
abundant entity pairs having both “contains_location” and “capital_of”, or both
“place_Llived” and “born_1in” relation types in KB. Naturally, training examples of such
entity pairs can be greatly polluted by false positives. In this case, it becomes tough to learn
semantic embeddings for relevant features of these relation types. However, we notice there
are quite a few answer sentences for relevant questions like “Where is XXX located”, “Where
did XXX live”, “What company is XXX with” in the QA corpus, which plays an important role
in adjusting vectors for features that are supposed to be the indicators for these relation types.
Table 4-5 shows some prediction errors from Colype-RM that are fixed in REQUEST.

Study the effect of QA dataset processing on F1 scores. As stated in Section 4.3.1, REQUEST
uses Stanford NER to extract entity mentions in QA dataset and all QA pairs consist of two entity
mentions and if either question or answer entity mention is not found, it drops the sentence.
Beyond that, we have conducted experiments with four other ways to construct QA pairs from
the raw QA sentences. As shown in Table 4-3, we lose many positive QA pairs if we only remain
answer (or question) targets that are detected as named entities. Thus, we have tried to keep
more positive pairs by relaxing the restriction from named entities to noun phrases. In addition,
we have tried to evaluate the performance by 1) keeping negative pairs as named entity pairs
or 2) changing them to noun phrase pairs. Besides that, inspired by>®°!!, the third processing
variation we have tried is to parse the QA sentences into dependency paths and to extract features

from these paths instead of the full sentences. The last one is that, we sample negative QA
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Figure 44 Effect of QA dataset processing on F1 scores. P_NP-N_NP: positive QA noun phrase pairs +
negative QA noun phrase pairs, P_NP-N_NER: positive QA noun phrase pairs + negative QA named entity
pairs, DepPath: convert QA sentences to dep paths, NFromP: sample negative QA pairs from both positive

and negative answer sentences.

pairs not only from negative answer sentences, but also from positive sentence when extracting
QA pairs. However, REQUEST achieves highest F1 score compared with these four processing
variations (as shown in Figure 4—4) by filtering out all non entity mention answers, keeping full
sentences and extracting only positive QA pairs from positive answer sentences.

Although by doing so, REQUEsT filters out a large number of question/answer sentences
and fewer QA pairs are constructed to provide semantic knowledge for RE, the remaining QA
pairs provide cleaner and more consistent information with RE dataset. Thus, it still outperforms
the other variations. Another interesting highlight is the comparison between using negative
named entity pairs and using negative noun phrase pairs when positive QA pairs are formed
by noun phrases. Although enforcing named entities is more consistent with RE datasets, a
trade-off exists when the data format of positive and negative QA pairs are inconsistent. As we
can see from the bar chart, the performance by using negative noun phrase pairs is better than

negative named entity pairs.

4.5 Related Work

Classifying relation types between entities in a certain sentence and automatically extracting
them from large corpora plays a key role in information extraction and natural language pro-

cessing applications and thus has been a hot research topic recently. Even though many existing
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knowledge bases are very large, they are still far from complete. A lot of information is hidden
in unstructured data, such as natural language text. Most tasks focus on knowledge base com-
pletion (KBP)®"! as a goal of relation extraction from corpora like New York Times (NYT)!'%!,
Others extract valuable relation information from community question-answer texts, which may

be unique to other sources!*®/.

For supervised relation extraction, feature-based methods!?! and neural network tech-
niques® %! are most common. Most of them jointly leverage both semantic and syntactic

features®?!

, while some use multi-channel input information as well as shortest dependency
path to narrow down the attention®® °!!. Two of the aforementioned papers perform the best on

the SemEval-2010 Task 8 and constitutes our neural baseline methods.

However, most of these methods require large amount of annotated data, which is time
consuming and labor intensive. To address this issue, most researchers align plain text with
knowledge base by distant supervision'®' for relation extraction. However, distant supervision
inevitably accompanies with the wrong labeling problem. To alleviate the wrong labeling prob-
lem, multi-instance and multi-label learning are used"® 1. Others!®!- %3 propose joint extraction
of typed entities and relations as joint optimization problem and posing cross-constraints of en-
tities and relations on each other. Neural models with selective attention!!?! are also proposed

to automatically reduce labeling noise.

The distant supervision provides one solution to the cost of massive training data. How-
ever, traditional DS methods mostly only exploit one specific kind of indirect supervision
knowledge - the relations/facts in a given knowledge base, thus often suffer from the problem
of lack of supervision. There exist other indirect supervision methods for relation extraction,
where some utilize globally and cross sentence boundary supervision!!"- 1921 some leverage
the power of passage retrieval model for providing relevance feedback on sentences!??!, and
others!!%-1061 Recently, with the prevalence of reinforcement learning applications, many infor-
mation extraction and relation extraction tasks have adopted such techniques to boost existing

s!197- 1081 - Qur methodology follows the success of indirect supervision, by adding

approache
question-answering pairs as another source of supervision for relation extraction task along with

knowledge base auto-labeled distant supervision as well as partial supervision.

Another indirect supervision source we use in the chapter, passage retrieval, as described
here, is the task of retrieving only the portions of a document that are relevant to a particular
information need. It could be useful for limiting the amount of non-relevant material pre-

sented to a searcher, or for helping the searcher locate the relevant portions of documents more

54
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quickly. Passage retrieval is also often an intermediate step in other information retrieval tasks,
like question answering!!®-'1?! and combining with summarization. Some passage retrieval

s!'3 include calculating query-likelihood and relevance modeling!'!'#!, others show

approache
that language model approaches used for document retrieval can be applied to answer passage
retrieval!'®!, Following the success of passage retrieval usage in question-answering pipelines,
to the best of our knowledge, we are the first to utilize passage retrieval, or specifically, an-
swer sentence selection from question-answer pairs to provide additional indirect feedback and

supervision for relation extraction task.
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Chapter 5 Relation Extraction for Commonsense

Knowledege

5.1 Introduction

Commonsense knowledge is an important ingredient in machine comprehension and inference.
Artificial intelligence systems can benefit from incorporating commonsense knowledge as back-
ground, such as ice is cold (HASPROPERTY), chewing is a sub-event of eating (HASSUBEVENT),
chair and table are typically found near each other (LocaTEDNEAR), etc. These kinds of com-
monsense facts have been used in many downstream tasks, such as textual entailment!> l and
visual recognition tasks!”!. The commonsense knowledge is often represented as relation triples
in commonsense knowledge bases, such as ConceptNet', one of the largest commonsense
knowledge graphs available today. However, most commonsense knowledge bases are manually
curated or crowd-sourced by community efforts and thus do not scale well. For example, Con-
ceptNet contains only 49 LocAaTEDNEAR relation triples. Many commonly co-located objects
such as (house, garden) and (fork, knife) are not included in this knowledge base. Another prob-
lem is that such commonsense knowledge bases are typically contributed by just a very limited
number of people due to the cost of manual labor. Thus no meaningful statistical scores can
be associated with the triples, making rank-based computation difficult. For instance, although
ConceptNet gives a confidence score (from O to infinity) to each triple, most of the triples have
the default score of 1, simply because the human contributor did not or could not provide a score.
If such commonsense knowledge is harnessed automatically from open-domain text corpora,
both of the above problems can be effectively addressed. Open information extraction not only

provides the much needed scale, but also valuable statistics that can turn into confidence scores.

This chapter aims to automatically extract the commonsense LocaTEDNEAR relation be-
tween physical objects from textual corpora. LocATEDNEAR is defined as the relationship
between two objects typically found near each other in real life. Because some physical objects
can be a location itself, this relation may include some instances of the AtTLocaTion relation,
e.g., room and door.

We focus on LocATEDNEAR relation for these reasons:

1. LocaTebpNEAR facts provide helpful prior knowledge to object detection tasks in com-
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Figure 5-1 LocaTeDNEAR facts assist the detection of vague objects: if a set of knife, fork and plate is on

the table, one may believe there is a glass beside based on the commonsense, even though these objects are

hardly visible due to low light.

plex image scenes!''®!. See Figure 5-1 for an example.

2. This commonsense knowledge can benefit reasoning related to spatial facts and physical
scenes in reading comprehension, question answering, etc.!!!”!

3. Existing knowledge bases have very few facts for this relation (ConceptNet 5.5 has only

49 triples of LocATEDNEAR relation).

We propose two novel tasks in extracting LocaATEDNEAR relation from textual corpora.
One is a sentence-level relation classification problem which judges whether or not a sentence
describes two objects (mentioned in the sentence) being physically close by. The other task is
to produce a ranked list of LocaTEDNEAR facts with the given classified results of large number
of sentences. We believe both two tasks can be used to automatically populate and complete

existing commonsense knowledge bases.

Additionally, we create two benchmark datasets for evaluating LocaTe»DNEAR relation

extraction systems on the two tasks: one is 5,000 sentences each describing a scene of two
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physical objects and with a label indicating if the two objects are co-located in the scene; the
other consists of 500 pairs of objects with human-annotated scores indicating confidences that
a certain pair of objects are commonly located near in real life.!

We propose several methods to solve the tasks including feature-based models and LSTM-
based neural architectures. The proposed neural architecture compares favorably with the
current state-of-the-art method for general-purpose relation classification problem. From our
relatively smaller proposed datasets, we extract in total 2,067 new LocaTEDNEAR triples that

are not in ConceptNet.

5.2 Sentence-level LocaATEDNEAR Relation Classification

Problem Statement Given a sentence s mentioning a pair of physical objects <e;, e;>, we call
<s,e;, e;> an instance. For each instance, the problem is to determine whether ¢; and e; are
located near each other in the physical scene described in the sentence s. For example, suppose
e; is “dog", e; is “cat”, and s = “The King puts his dog and cat on the table.”. As it is true that
the two objects are located near in this sentence, a successful classification model is expected to
label this instance as True. However, if s, = “My dog is older than her cat.”, then the label of the
instance <s», ¢;, ;> is False, because s, just talks about a comparison in age. In the following
subsections, we present two different kinds of baseline methods for this binary classification

task: feature-based methods and LSTM-based neural architectures.

5.2.1 Feature-based Methods

Our first baseline method is an SVM classifier based on following features commonly used in
many relation extraction models®!:

1. Bag of Words (BW): the set of words that ever appeared in the sentence.

2. Bag of Path Words (BPW): the set of words that appeared on the shortest dependency
path between objects e; and e; in the dependency tree of the sentence s, plus the words
in the two subtrees rooted at ¢; and e; in the tree.

3. Bag of Adverbs and Prepositions (BAP): the existence of adverbs and prepositions in
the sentence as binary features.

4. Global Features (GF): the length of the sentence, the number of nouns, verbs, adverbs,

adjectives, determiners, prepositions and punctuations in the whole sentence.

'https://github.com/adapt-sjtu/commonsense-locatednear
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Figure 5-2 Framework with a LSTM-based classifier

5. Shortest Dependency Path features (SDP): the same features as with GF but in depen-
dency parse trees of the sentence and the shortest path between e; and e;, respectively.
6. Semantic Similarity features (SS): the cosine similarities between the pre-trained GloVe
word embeddings!??! of the two object words.
We evaluate linear and RBF kernels with different parameter settings, and find the RBF kernel
with {C = 100,y = 1073} performs the best overall.

5.2.2 LSTM-based Neural Architectures

Although above features are both informative and easy to implement, they involve little se-
quential information such as the word order. LSTMs!!!8! are widely used in relation classifi-

cation[59’ 91, 99, 100]

. capturing not only the input to output but also the sequential relationships.
We observe that the existence of LocaTEDNEAR relation in an instance <s,e;,e,> depends on
two major information sources: one is from the semantic and syntactical features of sentence
s and the other is from the object pair <e;,e,>. By this intuition, we design our LSTM-based
model with two parts, shown in lower part of Figure 5-2. The left part is for encoding the

syntactical and semantic information of the sentence s, while the right part is encoding the

— 60 —
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Level Examples
Objects Ei, E;
Lemma open, lead, into, ...

Dependency Role | open#s, open#o, into#o, ...
POS Tag DT, PR, CC, JJ, ...

Table 5-1 Examples of four types of tokens during sentence normalization. (#s stands for subjects and #o

for objects)

semantic similarity between the pre-trained word embeddings of e; and e,.

Solely relying on the original word sequence of a sentence s has two problems: (i) the
irrelevant words in the sentence can introduce noise into the model; (ii) the large vocabulary
of original sentences induce too many parameters, which may cause over-fitting. For example,
given two sentences “The king led the dog into his nice garden.” and “A criminal led the dog
into a poor garden.”. The object pair is <dog, garden> in both sentences. The two words
“lead” and “into” are essential for determining whether the object pair is located near, but they
are not attached with due importance. Also, the semantic differences between irrelevant words,
such as “king” and “criminal”, “beautiful” and “poor”, are not useful to the co-location relation
between the “dog” and “garden”, and thus tend to act as noise.

To address above issues, we propose utilizing POS (Part-of-Speech) tags instead to capture
more syntactical information and reduce the vocabulary size. However, solely doing this loses
too much semantic dependency between the words.

Sentence Normalization. To address the above issues, we propose a normalized sentence
representation method merging the three most important and relevant kinds of information about
each instance: lemmatized forms, POS (Part-of-Speech) tags and dependency roles. We first
replace the two nouns in the object pair as “E;” and “E,”, and keep the lemmatized form of
the original words for all the verbs, adverbs and prepositions, which are highly relevant to
describing physical scenes. Then, we replace the subjects and direct objects of the verbs and
prepositions (nsubj, dobj for verbs and case for prepositions in dependency parse trees)
with special tokens indicating their dependency roles. For the remaining words, we simply use
their POS tags to replace the originals. The four kinds of tokens are illustrated in Table 5-1.
Figure 5-2 shows a real example of our normalized sentence representation, where the object
pair of interest is <dog, garden>.

Apart from the normalized tokens of the original sequence, to capture more structural



Chapter 5 Relation Extraction for Commonsense Knowledege EIERGA K F RS L

The king opened the door and led the dog into his nice garden.
DT open#s open DT open#to CC lead DT E; into PR JJ E,.

Table 5-2 Sentence Normalization Example

information, we also encode the distances from each token to E; and E, respectively. Such
position embeddings (position/distance features) are proposed by'!°! with the intuition that
information needed to determine the relation between two target nouns normally comes from
the words which are close to the target nouns.

The original sentence is first transformed to normalized sequence described above. We
adopt this feature because it can help LSTM keep track of the position of E; and E,, better
knowing where the two object words are. Then, we leverage LSTM to encode the whole
sequence of the tokens of normalized representation plus position embedding. In the meantime,
two pretrained GloVe word embeddings/??! of the original two physical object words are fed into
a hidden dense layer.

Finally, we concatenate both outputs and then use sigmo-id activation function to obtain
the final prediction. We choose to use the popular binary cross-entropy as our loss function,
and RMSProp as the optimizer. We apply a dropout rate!'?"! of 0.5 in the LSTM and embedding

layer to prevent overfitting.

5.3 LocATebpNEAR Relation Extraction

The upper part of Figure 5-2 shows the overall workflow of our automatic framework to mine
LocatedNear relations from raw text. We first construct a vocabulary of physical objects and
generate all candidate instances. For each sentence in the corpus, if a pair of physical objects e;
and e; appear as nouns in a sentence s, then we apply our sentence-level relation classifier on
this instance. The relation classifier yields a probabilistic score s indicating the confidence of
the instance in the existence of LocATEDNEAR relation. Finally, all scores of the instances from
the corpus are grouped by the object pairs and aggregated, where each object pair is associated
with a final score. These mined physical pairs with scores can easily be integrated into existing
commonsense knowledge base.

More specifically, for each object pair <e;, e;>, we find all the m sentences in our corpus
mentioning both objects. We classify the m instances with the sentence-level relation classifier

and obtain confidence scores for each instance, then feed them into a heuristic scoring function



L RGR K F A S5 Chapter 5 Relation Extraction for Commonsense Knowledege

f to obtain the final aggregated score for the given object pair. We propose the following 5

choices of f considering accumulation and threshold:

Jfo=m (5-1)

fi= i conf(s, e;, e;) (5-2)
k=1

= % kzz; conf(sy, e;, e;) (5-3)

= i 1 conf(sy.er.e;)>0.5) (5-4)
k=1

fa= %i 1 {conf(sy.er.e,)>0.5) (5-5)

k=1

5.4 Evaluation

Random | Majority | SVM | SVM(-BW) | SVM(-BPW) | SVM(-BAP) | SVM(-GF)
Acc. 0.500 0.551 0.584 0.577 0.556 0.563 0.605
P 0.551 0.551 0.606 0.579 0.567 0.573 0.616
R 0.500 1.000 | 0.702 0.675 0.681 0.811 0.751
F1 0.524 0.710 | 0.650 0.623 0.619 0.672 0.677
SVM(-SDP) | SVM(-SS) | DRNN | LSTM+Word | LSTM+POS | LSTM+Norm
Acc. 0.579 0.584 | 0.635 0.637 0.641 0.653
P 0.597 0.605 | 0.658 0.635 0.650 0.654
R 0.728 0.708 | 0.702 0.800 0.751 0.784
F1 0.656 0.652 | 0.679 0.708 0.697 0.713

Table 5-3 Performance of baselines on co-location classification task with ablation. (Acc.=Accuracy,

P=Precision, R=Recall, “-” means without certain feature)

In this section, we first present our evaluation of our proposed methods and the state-of-
the-art general relation classification model on the first task. Then, we evaluate the quality of

the new LocaTEDNEAR triples we extracted.
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5.4.1 Sentence-level LocaATEDNEAR Relation Classification

We evaluate the proposed methods against the state-of-the-art general domain relation classifi-
cation model (DRNN)!2!1| The results are shown in Table 5-3. For feature-based SVM, we do
feature ablation on each of the 6 feature types. For LSTM-based model, we experiment on vari-
ants of input sequence of original sentence: “LSTM+Word” uses the original words as the input
tokens; “LSTM+POS” uses only POS tags as the input tokens; “LSTM+Norm” uses the tokens
of sequence after sentence normalization. Besides, we add two naive baselines: “Random”
baseline method classifies the instances into two classes with equal probability. “Majority”
baseline method considers all the instances to be positive.

From the results, we find that the SVM model without the Global Features performs best,
which indicates that bag-of-word features benefit more in shortest dependency paths than on
the whole sentence. Also, we notice that DRNN performs best (0.658) on precision but not
significantly higher than LSTM+Norm (0.654). The experiment shows that LSTM+Word enjoys
the highest recall score, while LSTM+Norm is the best one in terms of the overall performance.
One reason is that the normalization representation reduces the vocabulary of input sequences,
while also preserving important syntactical and semantic information. Another reason is that
the LocAaTEDNEAR relation are described in sentences decorated with prepositions/adverbs.
These words are usually descendants of the object word in the dependency tree, outside of
the shortest dependency paths. Thus, DRNN cannot capture the information from the words
belonging to the descendants of the two object words in the tree, but this information is well
captured by LSTM+Norm.

5.4.2 LocATeEDNEAR Relation Extraction

Once we have obtained the probability score for each instance using LSTM+Norm, we can
extract LocATEDNEAR relation using the scoring function f. We compare the performance
of 5 different heuristic choices of f, by quantitative results. We rank 500 commonsense
LocaTEDNEAR object pairs described in Section 5.3. Table 5—4 shows the ranking results using
Mean Average Precision (MAP) and Precision at K as the metrics. Accumulative scores (f;
and f3) generally do better. Thus, we choose f = f; with a MAP score of 0.59 as the scoring
function.

Qualitatively, we show 15 object pairs with some of the highest f; scores in Table 5-5.
Setting a threshold of 40.0 for f;, which is the minimum non-zero f; score for all true object pairs

in the LocaTEDNEAR object pairs data set (500 pairs), we obtain a total of 2,067 LocATEDNEAR
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f MAP P@50 P@l100 P@200 P@300

fo 042 040 0.44 0.42 0.38
fi 058 0.70 0.60 0.53 0.44
£ 048  0.56 0.52 0.49 0.42
059  0.68 0.63 0.55 0.44
fi 056 040 0.48 0.50 0.42

Table 5—4 Ranking results of scoring functions.

(door, room) (boy, girl) (cup, tea)
(ship, sea)  (house, garden) (arm, leg)
(fire, wood) (house, fire) (horse, saddle)
(fire, smoke) (door, hall) (door, street)
(book, table) (fruit, tree) (table, chair)

Table 5-5 Top object pairs returned by best performing scoring function f;

relations, with a precision of 68% by human inspection.

5.5 Related Work

Classifying relations between entities in a certain sentence plays a key role in NLP applications
and thus has been a hot research topic recently. Feature-based methods"?! and neural network
techniques® 1% are most common. Xu, Mou, Li, et al. (2015) introduce multi-channel SDP-
based LSTM model to classify relations incooperating several different kinds of information of
a sentence improved by Xu, Jia, Mou, et al. (2016), which performed best on SemEval-2010
Task 8 and is one of our baseline methods.

The most related work to ours is the extraction of visual commonsense knowledge by
Yatskar, Ordonez, Farhadi (2016). This work learns the textual representation of seven types
of fine-grained visual relations using textual caption for the image in MS-COCO dataset!!??.
Another important related work is from Li, Taheri, Tu, et al. (2016), which enriches several
popular relations in ConceptNet with little textual information from real large corpora. However,

LocaTeEDNEAR relation was not studied in this work, while this relation is extremely scarce in

ConceptNet and has its own distinctiveness.
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Chapter 6 Extracting Cross-Cultural Differences and

Similarities in Social Media

6.1 Introduction

Computing similarities between terms is one of the most fundamental computational tasks
in natural language understanding. Much work has been done in this area, most notably
using the distributional properties drawn from large monolingual textual corpora to train vector
representations of words or other linguistic units!?> 23!, However, computing cross-cultural
similarities of terms between different cultures is still an open research question, which is
important in cross-lingual natural language understanding. In this chapter, we address cross-
cultural research questions such as these:

1. Were there any cross-cultural differences between Nagoya (a city in Japan) for native

English speakers and % 3 J& (Nagoya in Chinese) for Chinese people in 2012?

2. What English terms can be used to explain ‘5= " (a Chinese slang term)?

These kinds of questions about cross-cultural differences and similarities are important in cross-
cultural social studies, multi-lingual sentiment analysis, culturally sensitive machine translation,
and many other NLP tasks, especially in social media. We propose two novel tasks in mining
them from social media.

The first task (Section 6.4) is to mine cross-cultural differences in the perception of named
entities (e.g., persons, places and organizations). Back in 2012, in the case of “Nagoya”, many
native English speakers posted their pleasant travel experiences in Nagoya on Twitter. However,
Chinese people overwhelmingly greeted the city with anger and condemnation on Weibo (a
Chinese version of Twitter), because the city mayor denied the truthfulness of the Nanjing
Massacre. Figure 6-1 illustrates two example microblog messages about Nagoya in Twitter and
Weibo respectively.

The second task (Section 6.5) is to find similar terms for slang across cultures and languages.
Social media is always a rich soil where slang terms emerge in many cultures. For example,
“Pf 7 literally means “floating clouds”, but now almost equals to “nothingness” on the
Chinese web. Our experiments show that well-known online machine translators such as

Google Translate are only able to translate such slang terms to their literal meanings, even under
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#EAF AT ERAH NBARRLESA BBEXEN HFEARUESRSHEE S ORIKXE, M
FIe? AMZE XEER. BAAWN, KROUE/NODEEENSSSSSS
2012-2-25 20:22

#Nanjing says no to Nagoya# This small Japan, is really irritating. .

What is this? We Chinese people are tolerant of good and evil, Y A

and you? People do things, and the gods are watching. Japanese, |

be careful, and beware of thunder chop! & (via Bing Translation)
L 4 1 Mar 2012 v
Jus left from eating out with popz. We went to Nagoya. Yummy!! Now we're otw
to the lake to walk around bc of the beautiful weather. Thx GOD

Figure 6-1 Two social media messages about Nagoya from different cultures in 2012

clear contexts where slang meanings are much more appropriate.

Enabling intelligent agents to understand such cross-cultural knowledge can benefit their
performances in various cross-lingual language processing tasks. Both tasks share the same
core problem, which is how to compute cross-cultural differences (or similarities) between
two terms from different cultures. A term here can be either an ordinary word, an entity
name, or a slang term. We focus on names and slang in this chapter for they convey more social
and cultural connotations.

There are many works on cross-lingual word representation!!>*! to compute general cross-
lingual similarities!!?!. Most existing models require bilingual supervision such as aligned
parallel corpora, bilingual lexicons, or comparable documents!'?*-!28]. However, they do not
purposely preserve social or cultural characteristics of named entities or slang terms, and the
required parallel corpora are rare and expensive.

In this chapter, we propose a lightweight yet effective approach to project two incompatible
monolingual word vector spaces into a single bilingual word vector space, known as social
vector space (SocVec). A key element of SocVec is the idea of “bilingual social lexicon”, which
contains bilingual mappings of selected words reflecting psychological processes, which we
believe are central to capturing the socio-linguistic characteristics. Our contribution in this
chapter is two-fold:

1. We present an effective approach (SocVec) to mine cross-cultural similarities and dif-

ferences of terms, which could benefit research in machine translation, cross-cultural
social media analysis, and other cross-lingual research in natural language processing

and computational social science.
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2. We propose two novel and important tasks in cross-cultural social studies and social
media analysis. Experimental results on our annotated datasets show that the proposed

method outperforms many strong baseline methods.

6.2 The SocVec Framework

In this section, we first discuss the intuition behind our model, the concept of “social words”
and our notations. Then, we present the overall workflow of our approach. We finally describe

the SocVec framework in detail.

6.2.1 Problem Statement

We choose (English, Chinese) to be the target language pair throughout this chapter for the
salient cross-cultural differences between the east and the west'. Given an English term W and a
Chinese term U, the core research question is how to compute a similarity score, ccsim(W, U),
to represent the cross-cultural similarities between them.

We cannot directly calculate the similarity between the monolingual word vectors of W and

U, because they are trained separately and the semantics of dimension are not aligned. Thus,
the challenge is to devise a way to compute similarities across two different vector spaces while
retaining their respective cultural characteristics.

A very intuitive solution is to firstly translate the Chinese term U to its English counterpart

U’ through a Chinese-English bilingual lexicon, and then regard ccsim(W, U) as the (cosine)
similarity between W and U’ with their monolingual word embeddings. However, this solution
is not promising in some common cases for three reasons:

1. if U is an OOV (Out of Vocabulary) term, e.g., a novel slang term, then there is probably
no translation U’ in bilingual lexicons.

2. if W and U are names referring to the same named entity, then we have U" = W.
Therefore, ccsim(W, U) is just the similarity between W and itself, and we cannot
capture any cross-cultural differences with this method.

3. this approach does not explicitly preserve the cultural and social contexts of the terms.

To overcome the above problems, our intuition is to project both English and Chinese word

vectors into a single third space, known as SocVec, and the projection is supposed to purposely

carry cultural features of terms.

'Nevertheless, the techniques are language independent and thus can be utilized for any language pairs so long as the

necessary resources outlined in Section 6.2.3 are available.
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Figure 6-2 Workflow for computing the cross-cultural similarity between an English word W and a Chinese
word U, denoted by ccsim(W, U)

6.2.2 Social Words and Our Notations

Some research in psychology and sociology!'?® 13 show that culture can be highly related to
emotions and opinions people express in their discussions. As suggested by!!*!!, we thus define
the concept of “social word” as the words directly reflecting opinion, sentiment, cognition
and other human psychological processes', which are important to capturing cultural and
social characteristics. Both!'*?! and!!'*! find such social words are most effective culture/socio-
linguistic features in identifying cross-cultural differences.

We use these notations throughout the chapter: CnVec and EnVec denote the Chinese and
English word vector space, respectively; CSV and ESV denote the Chinese and English social
word vocab; BL means Bilingual Lexicon, and BSL is short for Bilingual Social Lexicon; finally,
we use E,, C, and S, to denote the word vectors of the word x in EnVec, CnVec and SocVec

spaces respectively.

6.2.3 Overall Workflow

Figure 6-2 shows the workflow of our framework to construct the SocVec and compute
cesim(W,U). Our proposed SocVec model attacks the problem with the help of three low-
cost external resources: (i) an English corpus and a Chinese corpus from social media; (ii) an

English-to-Chinese bilingual lexicon (BL); (iii) an English social word vocabulary (ESV) and a

"Example social words in English include fawn, inept, tremendous, gratitude, terror, terrific, loving, traumatic, etc. We

discuss the sources of such social words in Section 6.3.
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Chinese one (CSV).

We train English and Chinese word embeddings (EnVec and CnVec) on the English and
Chinese social media corpus respectively. Then, we build a BSL from the CSV, ESV and BL
(see Section 6.2.4). The BSL further maps the previously incompatible EnVec and CnVec into a
single common vector space SocVec, where two new vectors, Sy for W and Sy, for U, are finally

comparable.

6.2.4 Building the BSL

The process of building the BSL is illustrated in Figure 6-3. We first extract our bilingual
lexicon (BL), where confidence score w; represents the probability distribution on the multiple
translations for each word. Afterwards, we use BL to translate each social word in the ESV to
a set of Chinese words and then filter out all the words that are not in the CSV. Now, we have
a set of Chinese social words for each English social word, which is denoted by a “translation
set”. The final step is to generate a Chinese “pseudo-word” for each English social word using
their corresponding translation sets. A “pseudo-word” can be either a real word that is the
most representative word in the translation set, or an imaginary word whose vector is a certain

combination of the vectors of the words in the translation set.

English Social Vocab Bilingual Lexicon (BL) Chinese Filtered Bilingual Lexicon Bilingual Social Lexicon (BSL)
Social Vocab

inept inept A A% (incompetence)/0.7, K 4hi(clumsy)/0.3 w2z inept A fit(incompetence)/0.7, K ik(clumsy)/0.3 inept: ([ inept*: [T ]
& =1

terror terror & (horror)/0.6, & (fear)/0.4 18 & IB terror M (horror)/0.6, % (fear)/0.4 terror: [ [ | terror®:[ [ [ ]

Sfawn Sfawn  EK(flatter)/0.4, #4¥A(toady)/0.4, %(lamb)/0.3 fawn  [% A (flatter)/0.4, YA (toady)/0.4 ]\ fawr1.'|:|:|:| fawn*:l:‘:l:‘

“confidence” ' “translation set”

I

Pseudo-word Generator

Figure 6-3 Generating an entry in the BSL for “fawn” and its pseudo-word “‘fawn*”’

For example, in Figure 6-3, the English social word “fawn” has three Chinese translations
in the bilingual lexicon, but only two of them (underlined) are in the CSV. Thus, we only keep
these two in the translation set in the filtered bilingual lexicon. The pseudo-word generator takes
the word vectors of the two words (in the black box), namely Z=7K (flatter) and 4§ (toady),
as input, and generates the pseudo-word vector denoted by “fawn*”. Note that the direction of
building BSL can also be from Chinese to English, in the same manner. However, we find that
the current direction gives better results due to the better translation quality of our BL in this
direction.

Given an English social word, we denote t; as the i"" Chinese word of its translation set

consisting of N social words. We design four intuitive types of pseudo-word generator as
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follows, which are tested in the experiments:

(1) Max. Maximum of the values in each dimension, assuming dimensionality is K:
T
max(Ct(ll), . Ct(,lv))
Pseudo(Cy,, ..., Cyy) = :
max(Ct(lK), . Ct(llf))

(2) Avg. Average of the values in every dimension:

| &
Pseudo(Cy,, ..., Cyy) = v Z C,

(3) WAvg. Weighted average value of every dimension with respect to the translation confidence:
1 N
Pseudo(Cy ... Cy) = Z w;Cy,

(4) Top. The most confident translation:

Pseudo(Cy,, ..., Cyy) = Cy,, k = argmax w;

Finally, the BSL contains a set of English-Chinese word vector pairs, where each entry

represents an English social word and its Chinese pseudo-word based on its “translation set”.

6.2.5 Constructing the SocVec Space

Let B; denote the English word of the i entry of the BSL, and its corresponding Chinese
pseudo-word is denoted by Bf. We can project the English word vector Ey into the SocVec
space by computing the cosine similarities between Ew and each English word vector in BSL
as values on SocVec dimensions, effectively constructing a new vector Sy of size L. Similarly,
we map a Chinese word vector Cy to be a new vector Sy. Sw and Sy belong to the same vector
space SocVec and are comparable. The following equation illustrates the projection, and how

to compute ccsim'.

cesim(W,U) := f(Ew, Cy)

T T
cos(Ew, Eg,) cos(Cy, Cs;)
= Sim ’
COS(EW’ EBL) COS(CU’ CB;‘)
= sim(Sw, Sy)

The function sim is a generic similarity function, for which several metrics are considered in experiments.
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For example, if W is “Nagoya” and U is ‘44 7 J&”, we compute the cosine similarities
between “Nagoya” and each English social word in the BSL with their monolingual word
embeddings in English. Such similarities compose Spjeoya. Similarly, we compute the cosine
similarities between ‘44 1)&” and each Chinese pseudo-word, and compose the social word
vector S .

In other words, for each culture/language, the new word vectors like Sy are constructed
based on the monolingual similarities of each word to the vectors of a set of task-related words
(“social words” in our case). This is also a significant part of the novelty of our transformation

method.

6.3 Experimental Setup

Prior to evaluating SocVec with our two proposed tasks in Section 6.4 and Section 6.5, we
present our preparation steps as follows.

Social Media Corpora Our English Twitter corpus is obtained from Archive Team’s Twit-
ter stream grab'. The Chinese Weibo corpus comes from Open Weiboscope Data Access?!!34,
Both corpora cover the whole year of 2012. We then randomly down-sample each corpus to 100
million messages where each message contains at least 10 characters, normalize the text!!3,
lemmatize the text!’?! and use LTP!!3®! to perform word segmentation for the Chinese corpus.

Entity Linking and Word Embedding Entity linking is a preprocessing step which
links various entity mentions (surface forms) to the identity of corresponding entities. For the

Twitter corpus, we use Wikifier!!37- 138!

, a widely used entity linker in English. Because no
sophisticated tool for Chinese short text is available, we implement our own tool that is greedy
for high precision. We train English and Chinese monolingual word embedding respectively
using word2vec’s skip-gram method with a window size of 5!!%1,

Bilingual Lexicon Our bilingual lexicon is collected from Microsoft Translator®, which
translates English words to multiple Chinese words with confidence scores. Note that all named
entities and slang terms used in the following experiments are excluded from this bilingual
lexicon.

Social Word Vocabulary Our social word vocabularies come from Empath!'*"! and

OpinionFinder"*! for English, and TextMind'"** for Chinese. Empath is similar to LIWC!3!],

1https://arch'ive.org/deta'ils/twitterstream
2http://we‘iboscope.jmsc.hku.hk/da’caz*ip/
3h’ctp://www.b‘ing.com/’cranslator/ap'i/D'ict'iona|ry/Lookup?1‘rom=en&’co=zh—CHS&text=<'input_word>


https://archive.org/details/twitterstream
http://weiboscope.jmsc.hku.hk/datazip/
http://www.bing.com/translator/api/Dictionary/Lookup?from=en&to=zh-CHS&text=<input_word>
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but has more words and more categories and is publicly available. We manually select 91
categories of words that are relevant to human perception and psychological processes follow-
ing!*3!. OpinionFinder consists of words relevant to opinions and sentiments, and TextMind is
a Chinese counterpart for Empath. In summary, we obtain 3,343 words from Empath, 3,861

words from OpinionFinder, and 5,574 unique social words in total.

6.4 Task 1: Mining cross-cultural differences of named entities

Task definition: This task is to discover and quantify cross-cultural differences of concerns
towards named entities. Specifically, the input in this task is a list of 700 named entities of
interest and two monolingual social media corpora; the output is the scores for the 700 entities
indicating the cross-cultural differences of the concerns towards them between two corpora.

The ground truth is from the labels collected from human annotators.

6.4.1 Ground Truth Scores

[143] states that the meaning of words is evidenced by the contexts they occur with. Likewise,
we assume that the cultural properties of an entity can be captured by the terms they always
co-occur within a large social media corpus. Thus, for each of randomly selected 700 named
entities, we present human annotators with two lists of 20 most co-occurred terms within Twitter
and Weibo corpus respectively.

Our annotators are instructed to rate the topic-relatedness between the two word lists
using one of following labels: “very different”, “different”, “hard to say”, “similar” and “very
similar”. We do this for efficiency and avoiding subjectivity. As the word lists presented come
from social media messages, the social and cultural elements are already embedded in their
chances of occurrence. All four annotators are native Chinese speakers but have excellent
command of English and lived in the US extensively, and they are trained with many selected

examples to form shared understanding of the labels. The inter-annotator agreement is 0.67 by

Cohen’s kappa coefficient, suggesting substantial correlation!'#4!.

6.4.2 Baseline and Our Methods

We propose eight baseline methods for this novel task: distribution-based methods (BL-JS,
E-BL-JS, and WN-WUP) compute cross-lingual relatedness between two lists of the words sur-

rounding the input English and Chinese terms respectively (Lg and L¢); transformation-based
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Table 6-1 Selected culturally different entities with summarized Twitter and Weibo’s trending topics

Entity Twitter topics Weibo topics

coup, president Nasheed quit,
Maldives holiday, travel, honeymoon, paradise, beach
political crisis

N tour, concert, travel, Mayor Takashi Kawamura, Nanjing Massacre,
agoya . . .
attractive, Osaka denial of history
Conservative Party, Liberal
o ) travel, autumn, maples, study abroad,
Quebec Party, politicians, prime S
o i immigration, independence
minister, power failure
o gunman attack, police, South China Sea, sovereignty dispute,
Philippines ) )
quake, tsunami confrontation, protest
) patriotism, collective values, Jeremy Lin, Liu
) NBA, Chinese, good player, ) i
Yao Ming Xiang, Chinese Law maker, gold medal

Asian
superstar

top destination for overseas education, Chinese
college football, baseball,
USC student murdered, scholars, economics, Sino
Stanford, Alabama, win, lose ) o
American politics

methods (LTrans and BLex) compute the vector representation in English and Chinese corpus
respectively, and then train a transformation; MCCA, MCluster and Duong are three typical

bilingual word representation models for computing general cross-lingual word similarities.

The L and L in the BL-JS and WN-WUP methods are the same as the lists that
annotators judge. BL-JS (Bilingual Lexicon Jaccard Similarity) uses the bilingual lexicon to
translate Lx to a Chinese word list L. as a medium, and then calculates the Jaccard Similarity
between L. and L¢ as Jgc. Similarly, we compute Jeg. Finally, we regard (Jgc + Jeg)/2 as
the score of this named entity. E-BL-JS (Embedding-based Jaccard Similarity) differs from
BL-JS in that it instead compares the two lists of words gathered from the rankings of word
embedding similarities between the name of entities and all English words and Chinese words
respectively. WN-WUP (WordNet Wu-Palmer Similarity) uses Open Multilingual Wordnet!!+*!
to compute the average similarities over all English-Chinese word pairs constructed from the
Lrand Lc.

We follow the steps of!!%®! to train a linear transformation (LTrans) matrix between EnVec
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and CnVec, using 3,000 translation pairs with maximum confidences in the bilingual lexicon.
Given a named entity, this solution simply calculates the cosine similarity between the vector
of its English name and the transformed vector of its Chinese name. BLex (Bilingual Lexicon
Space) is similar to our SocVec but it does not use any social word vocabularies but uses bilingual

lexicon entries as pivots instead.

MCCA!"#" takes two trained monolingual word embeddings with a bilingual lexicon as
input, and develop a bilingual word embedding space. It is extended from the work of!!*8!, which
performs slightly worse in the experiments. MCluster!'*’! requires re-training the bilingual word
embeddings from the two mono-lingual corpora with a bilingual lexicon. Similarly, Duong!''*"!
retrains the embeddings from monolingual corpora with an EM-like training algorithm. We
also use our BSL as the bilingual lexicon in these methods to investigate its effectiveness and
generalizability. The dimensionality is tuned from {50, 100, 150,200} in all these bilingual

word embedding methods.

With our constructed SocVec space, given a named entity with its English and Chinese
names, we can simply compute the similarity between their SocVecs as its cross-cultural differ-
ence score. Our method is based on monolingual word embeddings and a BSL, and thus does

not need the time-consuming re-training on the corpora.

6.4.3 Experimental Results

For qualitative evaluation, Table 61 shows some of the most culturally different entities mined
by the SocVec method. The hot and trendy topics on Twitter and Weibo are manually summa-
rized to help explain the cross-cultural differences. The perception of these entities diverges
widely between English and Chinese social media, thus suggesting significant cross-cultural
differences. Note that some cultural differences are time-specific. We believe such temporal
variations of cultural differences can be valuable and beneficial for social studies as well. In-
vestigating temporal factors of cross-cultural differences in social media can be an interesting

future research topic in this task.

In Table 6-2, we evaluate the benchmark methods and our approach with three metrics:
Spearman and Pearson, where correlation is computed between truth averaged scores (quantify-
ing the labels from 1.0 to 5.0) and computed cultural difference scores from different methods;
Mean Average Precision (MAP), which converts averaged scores as binary labels, by setting 3.0

as the threshold. The SocVec:opn considers only OpinionFinder as the ESV, while SocVec:all

— 76 —



EEA K FEM P L Chapter 6 Extracting Cross-Cultural Differences and Similarities in Social Media

Table 62 Comparison of Different Methods

Method Spearman | Pearson | MAP
BL-JS 0.276 0.265 | 0.644
WN-WUP 0.335 0.349 | 0.677
E-BL-JS 0.221 0.210 | 0.571
LTrans 0.366 0.385 | 0.644

BLex 0.596 0.595 | 0.765
MCCA-BL(100d) 0.325 0.343 | 0.651
MCCA-BSL(150d) 0.357 0.376 | 0.671
MCluster-BL(100d) 0.365 0.388 | 0.693
MCluster-BSL(100d) 0.391 0.425 | 0.713
Duong-BL(100d) 0.618 0.627 | 0.785
Duong-BSL(100d) 0.625 0.631 | 0.791
SocVec:opn 0.668 0.662 | 0.834
SocVec:all 0.676 0.671 | 0.834
SocVec:noun 0.564 0.562 | 0.756
SocVec:verb 0.615 0.618 | 0.779
SocVec:adj. 0.636 0.639 | 0.800

uses the union of Empath and OpinionFinder vocabularies'.

Lexicon Ablation Test. To show the effectiveness of social words versus other type of
words as the bridge between the two cultures, we also compare the results using sets of nouns
(SocVec:noun), verbs (SocVec:verb) and adjectives (SocVec:adj.). All vocabularies under
comparison are of similar sizes (around 5,000), indicating that the improvement of our method
is significant. Results show that our SocVec models, and in particular, the SocVec model using
the social words as cross-lingual media, performs the best.

Similarity Options. We also evaluate the effectiveness of four different similarity options
in SocVec, namely, Pearson Correlation Coefficient (PCorr.), L1-normalized Manhattan distance
(L1+M), Cosine Similarity (Cos) and L2-normalized Euclidean distance (L2+FE). From Table
6-3, we conclude that among these four options, Cos and L2+E perform the best.

Pseudo-word Generators. Table 64 shows effect of using four pseudo-word generator

!The following tuned parameters are used in SocVec methods: 5-word context window, 150 dimensions monolingual word

vectors, cosine similarity as the sim function, and “Top” as the pseudo-word generator.
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Table 6-3 Different Similarity Functions

Similarity | Spearman | Pearson | MAP
PCorr. 0.631 0.625 | 0.806
L1+M 0.666 0.656 | 0.824
Cos 0.676 0.669 | 0.834
L2 +E 0.676 0.671 | 0.834

Table 6—4 Different Pseudo-word Generators

Generator | Spearman | Pearson | MAP
Max. 0.413 0.401 | 0.726
Avg. 0.667 0.625 | 0.831

W.Avg. 0.671 0.660 | 0.832
Top 0.676 0.671 | 0.834

functions, from which we can infer that “7Top” generator function performs best for it reduces

some noisy translation pairs.

6.5 Task 2: Finding most similar words for slang across languages

Task Description: This task is to find the most similar English words of a given Chinese
slang term in terms of its slang meanings and sentiment, and vice versa. The input is a list of
English/Chinese slang terms of interest and two monolingual social media corpora; the output
is a list of Chinese/English word sets corresponding to each input slang term. Simply put, for
each given slang term, we want to find a set of the words in a different language that are most
similar to itself and thus can help people understand it across languages. We propose Average
Cosine Similarity (Section 6.5.3) to evaluate a method’s performance with the ground truth

(presented below).

6.5.1 Ground Truth

Slang Terms. We collect the Chinese slang terms from an online Chinese slang glossary'

consisting of 200 popular slang terms with English explanations. For English, we resort to a

lh’ctps 1/ /www.chinasmack.com/glossary


https://www.chinasmack.com/glossary
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Gg Bi Bd CC LT
18.24 16.38 17.11 1738  9.14

TransBL MCCA MCluster Duong SV
18.13 17.29 17.47 20.92  23.01

(a) Chinese Slang to English

Gg Bi Bd LT TransBL
6.40 15.96 1544 732 11.43
MCCA MCluster Duong SV
15.29 14.97 15.13 17.31

(b) English Slang to Chinese

Table 65 ACS Sum Results of Slang Translation

slang word list from OnlineSlangDictionary' with explanations and downsample the list to 200
terms.
Truth Sets. For each Chinese slang term, its truth set is a set of words extracted from its English
explanation. For example, we construct the truth set of the Chinese slang term ‘7] F.” by
manually extracting significant words about its slang meanings (bold) in the glossary:

““H.: Ajfoolish person who is lacking in sense but still stubborn, rude, and impetuous.
Similarly, for each English slang term, its Chinese word sets are the translation of the words

hand picked from its English explanation.

6.5.2 Baseline and Our Methods

We propose two types of baseline methods for this task. The first is based on well-known online
translators, namely Google (Gg), Bing (Bi) and Baidu (Bd). Note that experiments using them
are done in August, 2017. Another baseline method for Chinese is CC-CEDICT? (CC), an
online public Chinese-English dictionary, which is constantly updated for popular slang terms.

Considering situations where many slang terms have literal meanings, it may be unfair
to retrieve target terms from such machine translators by solely inputing slang terms without
specific contexts. Thus, we utilize example sentences of their slang meanings from some

websites (mainly from Urban Dictionary?). The following example shows how we obtain the

1h’ctp ://onlineslangdictionary.com/word-1list/
2https ://cc-cedict.org/wiki/
3h’ctp ://www.urbandictionary.com/
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Table 6-6 Bidirectional Slang Translation Examples Produced by SocVec

Slang | Explanation Google Bing Baidu Ours
something as ephemeral ) )
o floating nothingness,
DN and unimportant as clouds nothing o
clouds illusion
“passing clouds”
“water army”’, people paid
] propaganda,
to slander competitors on Water .
IK 2 Navy Navy complicit,
the Internet and to help army
) o fraudulent
shape public opinion
, | SR | BE 1% (sluo), Bk
a woman with a reputation el
floozy N/A (deprav- i
for promiscuity (slut)
ity) (promiscuous)
: NCORERE | ICRERE | ACRERE |
fruit- a crazy person, someone PEIRE (bizarre),
(fruit (fruit (fruit
cake who is completely insane JR5i (annoying)
cake) cake) cake)

target translation terms for the slang word “fruitcake” (an insane person):

Input sentence: Oh man, you don’t want to date that girl. She’s always drunk and yelling.

She is a total fruitcake.'

Google Translation: #k, B A, MFABALIANL#. WELWSEE T, KB, ibd—
AR -

Another lines of baseline methods is scoring-based. The basic idea is to score all words in
our bilingual lexicon and consider the top K words as the target terms. Given a source term to be
translated, the Linear Transform (LT), MCCA, MCluster and Duong methods score the candidate
target terms by computing cosine similarities in their constructed bilingual vector space (with the
tuned best settings in previous evaluation). A more sophisticated baseline (TransBL) leverages
the bilingual lexicon: for each candidate target term w in the target language, we first obtain its
translations 7,, back into the source language and then calculate the average word similarities
between the source term and the translations 7;, as w’s score.

Our SocVec-based method (SV) is also scoring-based. It simply calculates the cosine

similarities between the source term and each candidate target term within SocVec space as their

1h’ctp ://www.englishbaby.com/lessons/4349/slang/fruitcake


http://www.englishbaby.com/lessons/4349/slang/fruitcake
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Table 67 Slang-to-Slang Translation Examples

Chinese
English Slang Explanation
Slang

. adorbz, adorb, adorbs,
HH ) cute, adorable
tweeny, attractiveee

shithead, stupidit, )
N EE A foolish person
douchbag

antsy, stressy, fidgety,
s A Y ¥, CEEY stress, pressure, burden
grouchy, badmood

SCOres.

6.5.3 Experimental Results

To quantitatively evaluate our methods, we need to measure similarities between a produced
word set and the ground truth set. Exact-matching Jaccard similarity is too strict to capture
valuable relatedness between two word sets. We argue that average cosine similarity (ACS)
between two sets of word vectors is a better metric for evaluating the similarity between two

word sets.
|A|l |B|

ACS(A, B
(:S( s ) |[1Hl;|:E: ;E: ”A&ll”lﬁl

The above equation illustrates such computation, where A and B are the two word sets: A is
the truth set and B is a similar list produced by each method. In the previous case of “* — 1 f.”
(Section 6.5.1), A is {foolish, stubborn, rude, impetuous} while B can be {imbecile, brainless,
scumbag, imposter}. A; and B; denote the word vector of the i"" word in A and j*" word in B
respectively. The embeddings used in ACS computations are pre-trained GloVe word vectors!
and thus the computation is fair among different methods.

Experimental results of Chinese and English slang translation in terms of the sum of ACS
over 200 terms are shown in Table 6-5. The performance of online translators for slang typically
depends on human-set rules and supervised learning on well-annotated parallel corpora, which
are rare and costly, especially for social media where slang emerges the most. This is probably

the reason why they do not perform well. The Linear Transformation (LT) model is trained

1https://nlp.stam‘ord.edu/projects/glove/
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on highly confident translation pairs in the bilingual lexicon, which lacks OOV slang terms
and social contexts around them. The TransBL method is competitive because its similarity
computations are within monolingual semantic spaces and it makes great use of the bilingual
lexicon, but it loses the information from the related words that are not in the bilingual lexicon.
Our method (SV) outperforms baselines by directly using the distances in the SocVec space,
which proves that the SocVec well captures the cross-cultural similarities between terms.

To qualitatively evaluate our model, in Table 66, we present several examples of our
translations for Chinese and English slang terms as well as their explanations from the glossary.
Our results are highly correlated with these explanations and capture their significant semantics,
whereas most online translators just offer literal translations, even within obviously slang con-
texts. We take a step further to directly translate Chinese slang terms to English slang terms by
filtering out ordinary (non-slang) words in the original target term lists, with examples shown
in Table 6-7.

6.6 Related Work

Although social media messages have been essential resources for research in computational
social science, most works based on them only focus on a single culture and language!!>%-1>%,
Cross-cultural studies have been conducted on the basis of a questionnaire-based approach for
many years. There are only a few of such studies using NLP techniques.

[156] present a framework to visualize the cross-cultural differences in concerns in multilin-
gual blogs collected with a topic keyword.!!3?! show that cross-cultural analysis through language
in social media data is effective, especially using emotion terms as culture features, but the work
is restricted in monolingual analysis and a single domain (love and relationship).l'**! investigate
the cross-cultural differences in word usages between Australian and American English through
their proposed ““socio-linguistic features” (similar to our social words) in a supervised way. With
the data of social network structures and user interactions,!'>”! study how to quantify the con-
troversy of topics within a culture and language.'>® propose an approach to detect differences
of word usage in the cross-lingual topics of multilingual topic modeling results. To the best of
our knowledge, our work for Task 1 is among the first to mine and quantify the cross-cultural
differences in concerns about named entities across different languages.

Existing research on slang mainly focuses on automatic discovering of slang terms!'>*! and
normalization of noisy texts!'*! as well as slang formation.['®"! are among the first to propose an

automatic supervised framework to mono-lingually explain slang terms using external resources.
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However, research on automatic translation or cross-lingually explanation for slang terms is
missing from the literature. Our work in Task 2 fills the gap by computing cross-cultural
similarities with our bilingual word representations (SocVec) in an unsupervised way. We
believe this application is useful in machine translation for social medial'¢!!,

Many existing cross-lingual word embedding models rely on expensive parallel corpora
with word or sentence alignments!!?”- 162!, These works often aim to improve the performance
on monolingual tasks and cross-lingual model transfer for document classification, which does
not require cross-cultural signals. We position our work in a broader context of “monolingual
mapping” based cross-lingual word embedding models in the survey of!!>*/. The SocVec uses
only lexicon resource and maps monolingual vector spaces into a common high-dimensional
third space by incorporating social words as pivot, where orthogonality is approximated by

setting clear meaning to each dimension of the SocVec space.
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Chapter 7 Global Structure Cohesiveness for Open

Information Extraction

7.1 Introduction

Massive text corpora are emerging worldwide in different domains and languages. The sheer
size of such unstructured data and the rapid growth of new data pose grand challenges on making
sense of these massive corpora. Information extraction (IE)!!! — extraction of relation tuples
in the form of (head entity, relation, tail entity) — is a key step towards automating knowledge
acquisition from text. In Fig. 7-1, for example, the relation tuple (Louvre-Lens, build, new
satellites) can be extracted from sentence S, to represent a piece of factual knowledge in text
with structured form. Relation tuples so extracted have a variety of downstream applications,
including serving as building blocks for knowledge base construction'® and facilitating question
answering systems!>#. While traditional IE systems require people to pre-specify the set of
relations of interests, recent studies on open-domain information extraction (Open IE)!!3-1]
rely on relation phrases extracted from text to represent the entity relationship, making it
possible to adapt to various domains (i.e., open-domain) and different languages (i.e., language-

independent).

Prior work on Open IE can be summarized as sharing two common characteristics: (1)
conducting extraction based on local context information; and (2) adopting a pre-trained incre-
mental system pipeline, which suffers from domain-shift problem. Current Open IE systems
focus on analyzing the local context within individual sentences to extract entity and their rela-
tionships, while ignoring the redundant information that can be collectively referenced across
different sentences and documents in the corpus. For example, in Fig. 7-1, seeing entity phrases
“London" and “Paris" frequently co-occur with similar relation phrase and tail entities in the
corpus, one gets to know that they have close semantics (same for “Great Britain" and “France").
On one hand, this helps confirm that (Paris, is in, France) is a quality tuple if knowing (London,
is in , Great Britain) is a good tuple. On the other, this helps rule out the tuple (Paris, build,
new satellites) as “Louvre-Lens" is semantically distant from “Paris". Therefore, the rich infor-
mation redundancy in the massive corpus motivates us to design an effective way of measuring

whether a candidate relation tuple is consistently used across various context in the corpus (i.e.,
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Positive Extractions from corpus

1 [Your.dry cleaner] set out from [eastern Queens] on [foot] [Tuesday Head Entity Predicate Tail Entity Cohesiveness
morning] and now somewhere near [Maspet upe eneration —
gl and h [Maspeth]. - T ' Generati e P e 1%round 2" round
™, J I h ht 't rount rount
2 [Louvre-Lens], a museum approximately 200 kilometers northwest of - —
[Paris], is building striking [new satellites] to display parts of their London in, south east of Great Britain v v
collection. Paris is in France (4 v
3 Standing on the [River Thames] in the south east of [Great Britain], Positive Measure Louvre-Lens build new satellites 4 4
[London] has been a major settlement for two millennia. Seeds """h Paris build new satellites v ')
4 Born in [Paris], [France], [Pierre-Gilles de Gennes] graduated from [Ecole Generation P v 1 X 1
Normale Supérieure]. eastern Queens on oot X
your dry cleaner set out from, on foot v v
Phrase Extraction Module l Global cohesweness
l L yourdry cleaner set out from eastern Queens v v
he eastern Queens France
) . A . France Negative Pool of Tuples
\c\uuork Tuesday morning  in, on, build s u
o
(,lllll‘5 y MaspeLth set out from Londen™ \\nca‘e.\-\ue retatio” o Head Entity Predicate Tail Entity Cohesiveness
o o Y
'f v °‘ ouvre-Lens south east of neastoh tocat® London build new satellites b4
w Y Paris graduate from w50 .
o london ... paris = o W satelltes New York on foot x
Text corpus from on
different domains B Entity phrase I Relation phrase Moot X &

Figure 7-1 Overview of the ReMine Framework.

global cohesiveness). To overcome the second issue, we propose a domain-specific framework,
called ReMine , to unify two important yet complementary signals on target corpus, i.e., the
local context information and the global cohesiveness (see also Fig. 7-1). Specifically cohesive
semantics is measured by low-dimensional embeddings of entity and relation phrases, where
two entity phrases are similar if they share similar relation phrases and entity arguments. The
entity and relation embeddings so learned can be used to measure the cohesiveness score of
a candidate relation tuple. ReMine jointly optimizes both the extraction of entity and relation
phrases and the global cohesiveness across the corpus, each being formalized as an objective
function so as to quantify the quality scores. It achieves competitive performance in Open IE
task(see Sec. 7.3.2) and shows its extraction clearness in Sec. 7.4. We demonstrate that an

End-to-End solution with global information for OpenlE task is a promising direction.

7.2 The ReMine Framework

In general, Open IE systems first identify entity phrases & , relation phrases R, then select and
pair up entity phrases and further extract meaningful relation tuples (e, e;, p,;) among them.
Formally, we define the task of Open IE as follows.'.

Given a corpus D, the task of Open IE aims to extract entity phrases &, relation phrases
R and relation tuples {ey, e;, p},]:]:’ |» Where entity argument pairs (ej,, e;) extracted from one
sentence are distinctive to each other.

There are three challenges. First, true label of phrases in target domain is unknown and

thus asks for effective measuring of the phrase quality. Second, there exist multiple entity

A1l the notations used can be found in Table 7-1
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Table 7—1 Notation Table

b; | the start index of the i-th phrase in the sentense

s; | the word sequence of i-th phrase segment [b,, b, )
t; type of the i-th phrase, t; € {ent, rel, background}
fi text feature of phrase segment s;

w; | word sequence probability given b; and b,

e | head entity in a relation tuple, where ¢, € &

e; | tail entity in a relation tuple, where ¢, € &

r relation phrase between any (ep, ¢;) € E;

pn: | predicate between head and tail entity, p = (ry, ...r;,)

Vi embedding for entity/relation phrase s;

o cohesiveness measure of relation tuple (ey, pp.r, €;)

phrases in one sentence. Therefore, selecting correct head and tail entity can be problematic.
Third, ranking extracted tuples without referring to the entire corpus may favor with good local

structures.

7.2.1 Domain-specific phrase extraction

We address entity and relation phrase extraction as a multiple type phrasal segmentation task,
traditional Open IE uses NP-chunking to extract entity phrases, yet not all noun phrases can carry
rich information and it requires additional training. Given word sequence C and corresponding
linguistic features ¥ in Table 7-3, a segmentation § = sy, 52, ..., 5, iS separated by boundary
index B = by, by, ..., b,,;. For each segment s;, there is a type indicator #;, indicating the most

possible type of s;, the joint probability is factorized as:

PC.F) = | | P(bis, silbis ) (7-1)

i=1
ReMine generates each segment as follows,
1. Given the start index b;, generate the end index b;.; according to context-free prior A,
i.e.dependency tree pattern prior.

2. Given the start and end index (b;, b;,1) of segment s;, generate a word sequence s; according
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Table 7-2 Entity and relation phrase candidates generation with regular expression patterns on

part-of-speech tag

Pattern Examples

Entity Phrase Patterns
<DT|PP$>?<JJI>*<NN>+ the state health department
<NNP>+<IN>?<NNP>+ Gov. Tim Pawlenty of Minnesota

Relation Phrase Patterns

{V=<VB|VB*>+} furnish, work, leave
{V}{P=<NN|JJ|RP|PRP|DT>} || provided by, retire from
{V}{W=<IN|RP>?*3}{P} die peacefully at home in

to a multinomial distribution over all segments at the same length.
P(si|bi, biv1) = P(silbis1 — bi) (7-2)

3. Finally, we generate a phrase type ¢; indicating that phrase s; most likely belongs to and a

quality score showing how it likely to be a good phrase [s].

P([si]]s;) = max P(t;|s;) (7-3)

Candidate Generation. Phrase Mining!*”! had made an assumption that quality phrases are
frequent n-grams in corpus, while it is not the case when sentence-level extractions are important.
To overcome phrase sparsity, several NP chunking rules!!%3!, see Table 7-2, are adopted to
discover infrequent but informative phrase candidates. In our experiments, frequent n-grams
and NP chunking rules contribute comparable amount of phrase candidates.

We denote unique phrase as u among all word sequence s; and P(s;|b;;; — b;) as 6, and
max P(t;|s;) is determined by random forest classifiers robust positive-only distant training!*”’.
Similar with!!%*! we use Viterbi Training!!'%! to update Segmentation S and parameters 6, A
iteratively. In the E-step, given 6 and A, dynamic programming is used to find the optimized
segmentation. In the M-step, we first fixed parameter 8, and update context-dependent prior o.

Next when A is fixed, optimized solution of 6, is:

Zﬁ] 1-(si =u)

0 = =
2,':1 1-(biy1 —b; = |u|)

(7-4)
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[Helen]e [Guatemala]e set
b Voo ‘%\
named from N -
— T [cleaner],  [foot] [Queens] out

who is [mother], /\ ! l ¢ @@@,‘\ej
A/l\zu Ql

Jor Maguires [birth] , [Your]el [drY]e, on  from [eastem]e

2 2

(a) Selecting among candidate subject entities (b) Finding shortest dependency path

Figure 7-2 Dependency parsing tree of example sentence in Fig. 7-1, “Your dry cleaner set out from eastern

Queens on foot Tuesday morning.” Segmented entities are marked as “[entity_token],,”

7.2.2 Relational Extraction in Local Context

Leveraging information along the dependency path between two given entities has been proved
useful for open information extraction!'%® 17! as it reduces noise by removing irrelevant semantic
phrases or clauses in long sentences with multiple entities. Instead of words, we treat phrases
as atoms, each predicate pj,, is composed of one or more relation phrases r. We now present

how we generate valuable relation tuples based on those phrases along dependency path, i.e.

P(r, e e) = | | POrilsi, en e)P(silbi, biv)

i=l (7-5)
max P(r, ¢, e,) = Z logo(r;, en, ;) + logw;
Ph,t i<pn.s

where by, b,, ..., b, are boundary index along dependency path of entity argument pair(ey, e;).
P(s;|b;, b; + 1) is inherited from phrase extraction module as word sequence probability w;, then
ReMine judges wether it is a good relation between entity e;, and entity e,. We will introduce
how to obtain positive entity pairs (ey, e;) and similarity measure o in next section. Notice
relation phrase boundary i € pj, in equation 7-5 can be derived via dynamic programming

since w; and o is known for every possible segmentation.

Positive Entity Pairs Initialization. For a given sentence s, after phrase segmentation, we have
entity arguments ey, e, ..., €, and relation arguments ry, r,, ..., r,,. Notice that good background
phrases also recognized as arguments. However, it’s infeasible to every entity pair and a large

portion of tuples are incorrect among N(N — 1) pairs. Positive entity pairs E; are entity
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arguments pair selected. Here we heuristically initialize E; % by attaching nearest subject ¢; to
object e; and make an approximation that each entity argument phrase can only be object once,
which also guarantees entity pairs to be distinctive. Nearest subject of e; is defined as entity
e; that has the shortest dependency path length to e; among all other entities. Considering
Fig. 7-2a, we would like to find subject of entity e; : Guatemala, length of the shortest path
between e; and ey, e, are 2,4 respectively. For those entity candidates with the same distance,
see Fig. 7-2b, both e;: Your dry cleaner and e,: eastern Queens are one hop away from e,: foot.
We will prefer subject with “nsubj” type i.e.e; then choose closest entity in original sentence if

there are still multiple of them.

7.2.3 Global Measuring of Cohesiveness

In our illustrative example in Fig. 7-1, current methods use textual patterns!> 198! to identify
(Paris, build, new satellites) as a false extraction, while we prune it via global cohesiveness
measure 0. To capture the global cohesiveness of relation tuples, we adopt translating measuring

of knowledge base completion!!®!,

oPneht) = v +vp —villiv €R (7-6)

Such objective associates entity and relation with dense feature vectors, where vy, v; are embed-
dings for head and tail entities, p is the predicate. We use L; norm in ReMine for efficiency.

Based on initial positive entity pairs constructed E,; % and relation tuples, we construct
a pseudo knowledge graph. Particularly, predicate p,, = (ry, s, ...,1,) may contain several
relation phrases. We model multiple relation phrases in one predicate as process of knowledge
traverse!' j.e.v, = Y1 v, /n.

In order to learn global cohesiveness representation V. We construct correlated negative
tuples from positive seeds i.e.current relation tuples 7 accordingly, see Fig. 7-1. False tuples
like (Paris, build, new satellites) will be reduced by some similar negative tuples like (Paris,

build, River Thames). Cohesiveness measure S is optimized as follows,

7 T

max Z Z o(p,h,t)—o(p,h',t')—y (7-7)

p,h,t p,h’,t’

where 7~ denote positive relation tuples generated by local relational extraction, vy is the hyper

margin, (p, h’,t’) € 7~ is composed of training tuples with either h or t replaced.
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7.2.4 The Joint Optimization Problem

We now show how local context and global cohesiveness above can be organically integrated.
Relation tuple generation in sec 7.2.2 incoporates cohesiveness similarity oo and cohesivess

measure learning depends on target domain tuples 7.

Update Positive Pairs. Given semantic representation for each entity e and relation r and local
segmentation between entity pairs, we can update the Positive Entity Pairs by finding most
semantically consistent subject e;, for each object e,. By optimizing P(r, e;,, e,) in Eq. 7-5, we

. . oL . +n+l
also obtain the relation tuples for updated positive pairs £;""".

E} = argmax P(py . ey, €,) (7-8)

€h

Overall Updating Schema. From an overall point of view, the final objective for update is

formulated as the sum of both sub-objectives,

0= Olocal + Oglobal (7-9)
T T
Where Olocal = max Z P(Ph,z, €hn, 61), Oglobal = max Z Z O'(P’ h’ t) - U(p’ hlv t,) -7. TO
E;} p.h,t p,h’,t’

maximize above uniﬁeﬁ open IE objective, see Alg. 7-1, we first initialize positive entity pairs
E; 9. Given entity argument pairs, we perform local optimization, which leads to positive
relation tuples 7. Note that, at the first round, there is no global representation, so we initialize
all o = 1 as identical. Then we update global phrase semantic representation via stochastic
gradient descent. With both global cohesiveness information and local segmentation result,
ReMine updates positive pairs as described in Sec. 7.2.2. Overall ReMine solves the integrated
problem in a greedy manner, it iteratively updates local and global objectives until a stable o

and E; is reached.

7.3 Experiments

In this section, we evaluate the performance of the proposed system on Open Information
Extraction. By designing experiment datasets and comparing the output of our system with
state-of-the-art Open IE systems to examine our claim: (1) a domain-specific and end-to-end
mannered pipeline performs consistently well on different domains; and (2) global structure

cohesiveness improves Open Information Extraction.
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Algorithm 7-1 Joint Tuple Mining

Input: Corpus D, Sentence S, Entities &, Relations R, Word sequence probability W
Output: Relation Tuples 7, representation V, similarity measure o
initialize positive £ according Sec. 7.2.2
initialize similarity measure o = 1
while £ is not stable do
for each entity argument pair (e, e;) do
identify semantic path P(ey, e;)
pn.: < from relation tuple generation module given W and o
update relation tuple (es, pp.s, ;) € T
end for
vV, o < update global cohesiveness module
update E according to &, R and o

end while

Table 7-3 List of features used in the phrase extraction module (Sec. 7.2.1).

Feature Descriptions Example

popularity raw frequency, occurrence probability
sub-phrases within long frequent phrases are . ) . o
completeness ] ) ‘relational database system” meets the criteria
also informative

tokens in quality phrases should co-occurs

concordance “strong tea” versus “heavy tea”
frequently
punctuations phrase in parenthesis, quote or has dash after (12.pm), “the Zeitlin sidewinder”
stopwords first/last token is stopword and stopword ratio the, their, therefore
word shape first capitalized or all capitalized NBA, Defense Secretary Donald H. Rumsfeld

part-of-speech ) ) )
. unigram and bigram POS tags the Rev. Ian Paisley: DT, NNP,DT-NNP
ags

7.3.1 Experimental Setup

Datasets. We use two datasets in our experiments: (1) NYTU7!: The training corpus consists
of 23.6k sentences from ~294k 1987-2007 New York Times news articles. 395 sentences are
manually annotated with entity and relation mentions by authors!'7!!. (2) Twitter!'’?l: The

dataset consists of 1.4 million tweets in Los Angeles collected from 2014.08.01 to 2014.11.30.

Distantly Supervised Phrase Seeds. Our proposed method ReMine mainly have several
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outcomes, including high-quality entity and relation phrases and relation tuples. For each
corpus, we first generate some distant supervision seeds via DBpedia Spotlight service'!!”?!
for entity phrases. With entity phrases, we generate relation phrases between each pair of
entity mentions via pattern matching. We then followed the procedure introduced in Sec. 7.2.1,

segmenting input corpora into entity phrases, relation phrases, and background phrases.

Phrase Features Generation. To estimate type and quality in step 4 of Sec. 7.2.1, we designed
a set of features ¥ in Table 7-3 that indicates a good phrase and its type. It can be grouped
into several different categories, i.e.statistic features, token-wise features and POS features.
ReMine treats phrases with multiple POS tag sequences into different patterns. For example,
“work NN” and “work VBP” are two different semantic patterns. Shang et al.l*”! show that

considering POS tags in quality predictor yields better performance.

Compared Methods. We consider following approaches for comparison:

(1) OLLIE!! utilizes open pattern learning and extracts patterns over dependency path and part-
of-speech tags. (2) ClausIE!"®®! adopts clause patterns to handle long-distance relationships.
(3) Stanford OpenlE!'"¥ learns a clause splitter via distant training data. (4) MinIE!'”> refines
tuple extracted by ClauslE by identifying and removing parts that are considered overly specific.
(5) ReMine-L is a variant of our approach with only local tuple generation. (6) ReMine-
G extend ReMine-L by ranking tuples via global cohesiveness without any further iterations. (7)
ReMine is our proposed approach, in which relation tuple generation module collaborates with
global cohesiveness module. All Open IE methods, to some extent, requires weak supervision

or distant supervision.

Evaluation Setup. We aim to compare performance in both normal and short text, so we choose
NYT and Twitter dataset for evaluation. For the relation tuple extraction task, since each tuple
obtained by ReMine and other benchmark methods will also be assigned a confidence score. We
rank all the tuples according to their confidence scores. Based on the ranking list, we use the
following four measures: P@k is the precision at rank k. M AP is mean average precision of
the entire ranking list. NDCG @k is the normalized discounted cumulative gain at rank k. Note

that we do not use recall in this task because it is infeasible to know all the “correct” tuples.

Annotations Setup. We manually labeled the extractions got from these extractors. Each
extraction was labeled by two independent annotators for two rounds. Both annotators are

highly proficient and literate in English. The two annotators are asked to evaluate without

'https://github.com/dbpedia-spotlight/dbpedia-spotlight
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Table 7—4 Performance comparison with state-of-the-art Open IE systems on two datasets from different

domains, using Precision@K, Mean Average Precision (MAP) and Normalized Discounted Cumulative

Gain (NDCG).
NYT!7! Twitter!!7?)
Methods
P@100 | P@200 MAP | NDCG@100 | NDCG@200 P@100 | P@200 MAP | NDCG@100 | NDCG@200
ClauslE 0.580 0.625 0.623 0.575 0.667 0.300 0.305 0.308 0.332 0.545
Stanford 0.680 0.625 0.665 0.689 0.654 0.390 0.410 0.415 0.413 0.557
OLLIE 0.670 0.640 0.683 0.684 0.775 0.580 0.510 0.525 0.519 0.626
MinlE 0.680 0.645 0.687 0.724 0.723 0.350 0.340 0.361 0.362 0.541
ReMine-L 0.578 0.578 0.585 0.578 0.631 0.498 0.499 0.506 0.500 0.533
ReMine-G 0.730 0.695 0.734 0.751 0.783 0.510 0.580 0.561 0.522 0.610
ReMine 0.780 0.720 0.760 0.787 0.791 0.610 0.610 0.627 0.615 0.651

knowing which model produced the results, eliminating potential bias in evaluation. One
extraction is treated as correct only if both labelers think it is correct. Similar to the settings in
previous studies!!®®!, we ignore the context of the extracted tuples during labeling. For example,
both (“we”, “hate"”, “it") and (“he", “has", “father") will be treated as correct as long as they
meet the fact described in the sentence. However, tuples cannot read smoothly will be labeled
as incorrect propositions. For example, (“he", “is", “is the professor") and (“he", “is", “the
professor and') will not be counted since they have mistakes in the word segmentation level.
We measured the agreement between the two labelers using Cohen’s Kappa value. The scores

are 0.79 and 0.73 for the NYT dataset and the Twitter dataset respectively.

7.3.2 Experiments and Performance Study

Open IE systems can extract information tuples from open domain corpus. We compared
ReMine with its own ablations ReMine-L and ReMine-G as well as four other Open IE systems
mentioned above.

Sometimes existing systems unintentionally paraphrase extractions as arguments may have
overlapped boundaries. An extreme case, imagine there are two systems, one reports N correct
tuples and the other with 2N paraphrased. Since P @k curves are usually monotone decreasing,
we will favor system generating 2N tuples. Fixed phrase boundaries prevent ReMine from
generating redundant facts from the corpus, a detailed study can be found in case study. 7.4.
Among all the Open IE system described above, ReMine and OLLIE extract a relatively small
number of tuples. For example, for the first 100 sentences in the NYT test set, both ReMine and
OLLIE get about 300 tuples. In contrast, Stanford OpenlE returns more than 1,000 tuples. To
alleviate the “unintentional paraphrasing” issue, since each extracted tuple is also assigned a

confidence score, we select 300 tuples for both datasets with the highest scores for each Open
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Figure 7-3 The Precision@K curves of different Open IE systems on NYT and Twitter datasets.

IE system to plot the curves. By selecting 100 sentences from NYT test set and 300 tweets from
Twitter test set, we believe ~3 tuples per sentence in News domain and ~1 tuple per sentence in
Twitter seems to be reasonable. The results are shown in Figure 7-3 and Table 7-4.

“Does ReMine performs consistently well on different domains?”’

According to the curves in Figure 7-3a and 7-3b, ReMine achieves the best performance
among all Open IE systems. All methods experience performance drop in Twitter, while
ReMine declines less than any other methods on the rank-based measures. In the NYT dataset,
all the systems except OLLIE have similar overall precision (i.e.P@300). But ReMine has a
“higher” curve since most tuples obtained by Stanford OpenlE and ClauslE will be assigned

score 1. Therefore we may not rank them in a very rational way. In contrast, the scores of
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different tuples obtained by ReMine-G and ReMine are usually distinct from each other. In
Table 7—4, ReMine also consistently performs the best . In the Twitter dataset, ReMine shows
its power in dealing with short and noisy text. Both ClauslE and MinlE have a rather low
score since there are lots of non-standard language usages and grammatic errors in tweets.
Dependency parsing attached more wrong arguments and labels. All methods investigated
depends on dependency parsing in varying degrees, while clause-based methods rely heavily
on it and may not achieve a satisfying performance.

Does global cohesiveness improve quality of Open IE? Model-wise we believe global
cohesiveness helps Open IE from two aspects: (1) rank tuples (2) update entity argument pairs.
From Figure 7-3 and Table 7-4, We found ReMine outperforms ReMine-G and ReMine-L on
each evaluation metric on both datasets. In particular, ReMine-G differs from ReMine-L only
on extraction scores, and global cohesiveness o provide better ranking performance(P@300)
than random. The gain between ReMine and ReMine-G also clearly shows the updated entity
pairs and extractions have better quality in general. In the twitter dataset, a larger performance
gap proves that global cohesiveness is more robust to low quality and short text compared with

pattern and clause.

7.4 Case Study

Our studies reveal overall quality of extractions compared with other Open IE systems and

effectiveness of specific component.

Clearness and correctness on extractions. In Table. 7-5, we show the extraction samples of
the NYT sentence “Gov. Tim Pawlenty of Minnesota ordered the state health department this
month to monitor day-to-day operations at the Minneapolis Veterans Home after state inspectors
found that three men had died there in the previous month because of neglect or medical errors.”.
We could see that all the extractors share consensus on that “Gov. Tim Pawlenty of Minnesota
ordered the state health department” (R,, R3, R, R and R;3). But some other actions do not
belong to “Tim Pawlenty". Both Stanford OpenlE and OLLIE make mistakes on that (R4 and Ry).
In contrast, ClauslE has no logic mistakes in the samples. However, the objective component
of R; is too complicated to illustrate one proposition clearly. As we mentioned above, this
kind of tuples will be labeled as incorrect ones. R;s is the only correct tuple to identify the
location “Minneapolis Veterans Home”, and ReMine also carefully selects the words to form

the predicate “order_to_monitor_at” to prevent excessively long relation phrase.
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Table 7-5 Extraction samples of one sentence in the NYT dataset using different methods. “T” means
correct tuples and “F” means incorrect ones. “The tuple is too complicated to clearly explain one

proposition. #*The tuple cannot read smoothly. "The tuple is logically wrong.

ClausIE
Ry (“Gov. Tim Pawlenty of Minnesota", “ordered", “the state health department this month to monitor F*
day-to-day operations after state inspectors found that three men had died there in the previous month
because of neglect or medical errors")
R, (“Gov. Tim Pawlenty of Minnesota", “ordered", “the state health department this month to monitor T
day-to-day operations")
Stanford OpenlE
Rs (“Gov. Tim Pawlenty", “ordered", “state health department") T
Ry (“Gov. Tim Pawlenty", “monitor", “operations") Ff
Rs (“three men", “died there because of", “neglect") T
Rs (“men”, “died in", “month") F#
OLLIE
R; (“Gov. Tim Pawlenty of Minnesota", “ordered the state health department in", “this month") T
Rg (“three men", “had died there in", “the previous month") T
Ry (“Gov. Tim Pawlenty of Minnesota", “had died because of", “neglect errors") Ff
MinlE
Ryo (“Tim Pawlenty", “is", “Gov.") T
Ri1 (“Tim Pawlenty of Minnesota", “ordered state health department”, "this month") T
Ry, (“QUANT_S_1 men", “had died because of", “neglect errors") Ff
ReMine
Ri3 (“Gov. Tim Pawlenty of Minnesota", “order", “the state health department") T
Ryi4 (“Gov. Tim Pawlenty of Minnesota", “order_to_monitor", “day-to-day operation”) T
Ris (“Gov. Tim Pawlenty of Minnesota", “order_to_monitor_at", “Minneapolis Veterans Home") T
Ri¢ (“three man", “have_die_there", “medical error") F*

Distinctiveness of extractions. In our formulation, we try to cover every entity detected in the
target sentence while avoid extracting duplicate tuples. In Fig. 7—4a, we show the distribution
of the number of extractions obtained by each Open IE system on the first 100 sentences in
NYT dataset. We can see that OLLIE’s and ReMine ’s distributions are relatively balanced.
In contrast, Stanford OpenlE returns extractions with a large variance. Among 1054 tuples it
extracted, there are 228 tuples belong to a single sentence and 157 belong to another. In fact, the
latter sentence has only 39 words. This reminds us that the number of extractions may not be a

good alternative of “recall”. A more direct way to examine distinctiveness of our extractions is
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Figure 74 Distribution over number of extractions and distinctiveness of extractions for different Open IE

systems.

calculating average Jaccard similarity between extractions from same sentence. We present the
Jaccard similarity distribution of different systems at Fig. 7-4b, we can clearly see MinlE and

ReMine extracts most distinctive facts as they both consider not to be overly specific.

Effectiveness of global evidence. Corpus-level cohesiveness can help reduce local error while
generating relation tuples. Especially on twitter set, local linguistic structure fails to attach argu-
ment correctly at the first place whereas global cohesiveness module corrects those extractions.
In table 7-6, considering sentence “Dudamel conduct his score from Liberador#BeastMode
@ Hollywood Bowl” ReMine rejects entity pair (Liberador, Hollywood) which is not compatible
with the predicate “@”. This is because in the twitter corpus, it is more common to see Person

@ Place. Therefore ReMine attaches Hollywood to Dudamel after updating entity pairs.

7.5 Related Work

Information Extraction. Open domain information extraction has been extensively studied in
literature. Most of the existing work follows two lines of work, that is, pattern based meth-

ods or clause based methods. Pattern based information extraction can be as early as Hearst
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Table 7-6 Different entity pairs discovered by ReMine and ReMine-G , where blue ones are incorrect

extractions.
ReMine-G ReMine
(Dudamel; “conduct”; Liberador) (Dudamel; “conduct”; Liberador)
(Dudamel; “conduct...from”; (Dudamel; “conduct... @”;
#BeastMode) Hollywood Bowl)

(Liberador, “@”, Hollywood Bowl)

patterns like “N P, such as { NP, NP,, ...} for hyponymy relation extraction!!’!. Carlson and
Mitchell et al. introduced Never-Ending Language Learning (NELL) based on free-text predi-

177.178] ~ ReVerb!!%! identified relational phrases via part-of-speech-based regular

cate patterns!
expressions. Besides part-of-speech tags, recent works start to use more linguistic features,
like dependency parsing, to induct long distance relationships!!> 17!, Similarly, ClausIE!%®!
inducted short but coherent pieces of information along dependency paths, which is typically
subject, predicate and optional object with complement. Angeli et al. adopted a clause split-
ter using distant training and mapped predicates to a known relation schema statistically!!™.
MinIE!'7! further improves the clearness of relation tuples by introducing different statistical
measures like polarity, modality, attribution, and quantities. Compared with these works, this
paper differs in several aspects: (1) previous works rely on external tools for phrase extraction,
which may suffer from domain-shift and sparsity problem, while we provide an End-to-End
solution towards Open IE on target domain. (2) The correctness of extracted facts is measured

via global cohesiveness instead of using local context alone.

Knowledge Base Population. Knowledge bases (KBs), such as DBpedial'®”! and Freebase!!8!/,
extract tuples from World Wide Web. However, they are all built upon existing and specific
relation types. Knowledge base population or completion aims at predicting whether tuples not
in knowledge base are likely to be true or not. Embedding models!'%®! has been widely used
to learn semantic representation for both entities and relations. Recent research!!”% 1821 shows
that relation path is traversable and contains richer information. People also try to construct
web-scale knowledge base using statistical learning and pre-defined rules and predicates!!83).
All these approaches start with clean knowledge base tuples, our proposed start from noisy
extractions but share similar semantic measures as them. In other words, we output comparable

clean relation tuples rather than taking gold tuples as input.






EiERGA K F R FIEe L Summary

Summary

In this thesis we explored various research problems in information extraction, with a focus on
utilizing indirect supervision by exploiting outside supplementary data or the data itself inherent
traits. We first start with tackling the named entity recognition problem, then relation extraction
problem. We extend to open domain information extraction and also propose novel tasks related

to extracting cultural differences in the social media domain.

In the first chapter, we proposed a sequence labeling framework, LM-LSTM-CRF , which
effectively leverages the language model to extract character-level knowledge from the self-
contained order information. Highway layers are incorporated to overcome the discordance issue
of the naive co-training Benefited from the effectively captured such task-specific knowledge,
we can build a much more concise model, thus yielding much better efficiency without loss of
effectiveness (achieved the state-of-the-art on three benchmark datasets) . In the future, we plan
to further extract and incorporate knowledge from other “unsupervised” learning principles and

empower more sequence labeling tasks.

In the second chapter, we present a novel multi-channel BiLSTM-CRF model for emerging
named entity recognition in social media messages. We find that BiLST-CRF architecture with
our proposed comprehensive word representations built from multiple information are effective

to overcome the noisy and short nature of social media messages.

In the thrid chapter, we present a novel study on indirect supervision (from question-
answering datasets) for the task of relation extraction. We propose a framework, REQUEsT, that
embeds information from both training data automatically generated by linking to knowledge
bases and QA datasets, and captures richer semantic knowledge from both sources via shared
text features so that better feature embeddings can be learned to infer relation type for test
relation mentions despite the noisy training data. Our experiment results on two datasets
demonstrate the effectiveness and robustness of REQuUEsT. Interesting future work includes
identifying most relevant QA pairs for target relation types, generating most effective questions
to collect feedback (or answers) via crowd-sourcing, and exploring approaches other than distant
supervision!!34 1851,

In the fourth chapter, we propose to identify LocATEDNEAR relation from literature text and

construct a knowledge base of object pairs that would commonly appear near each other in real
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world. In this chapter, we present a novel study on enriching LocATEDNEAR relationship from
textual corpora. Based on our two newly-collected benchmark datasets, we propose several
methods to solve the sentence-level relation classification problem. We show that existing
methods do not work as well on this task and discovered that LSTM-based model does not
have significant edge over simpler feature-based model. Whereas, our multi-level sentence
normalization turns out to be useful. Future directions include: 1) better leveraging distant
supervision to reduce human efforts, 2) incorporating knowledge graph embedding techniques,
3) applying the LocaTEDNEAR knowledge into downstream applications in computer vision and
natural language processing.

In the fifth chapter, we present the SocVec method to compute cross-cultural differences
and similarities, and evaluate it on two novel tasks about mining cross-cultural differences in
named entities and computing cross-cultural similarities in slang terms. Through extensive
experiments, we demonstrate that the proposed lightweight yet effective method outperforms a
number of baselines, and can be useful in translation applications and cross-cultural studies in
computational social science. Future directions include: 1) mining cross-cultural differences
in general concepts other than names and slang, 2) merging the mined knowledge into existing
knowledge bases, and 3) applying the SocVec in downstream tasks like machine translation.

In the final chapter, we study the task of open information extraction and proposes a
principled framework, ReMine , to unify local contextual information and global structural
cohesiveness for effective extraction of relation tuples. ReMine leverages distant supervision
in conjunction with existing knowledge bases to provide automatically-labeled sentence and
guide the entity and relation segmentation. The local objective is further learned together with
a translating-based objective to enforce structural cohesiveness, such that corpus-level statistics
are incorporated for boosting high-quality tuples extracted from individual sentences. We de-
velop a joint optimization algorithm to efficiently solve the proposed unified objective function
and can output quality extractions by taking into account both local and global information.
Experiments on two real-world corpora of different domains demonstrate that ReMine system
achieves superior precision when outputting same number of extractions, compared with sev-
eral state-of-the-art open IE systems. As a byproduct, ReMine also demonstrates competitive
performance on detecting mentions of entities from text when compared to several named entity

recognition algorithms.
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